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Noise generation by high-frequency gusts
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The method of matched asymptotic expansions is used to describe the sound generated
by the interaction between a short-wavelength gust (reduced frequency k, with k � 1)
and an airfoil with small but non-zero thickness, camber and angle of attack (which
are all assumed to be of typical size O(δ), with δ � 1) in transonic flow. The mean-
flow Mach number is taken to differ from unity by O(δ2/3), so that the steady flow
past the airfoil is determined using the transonic small-disturbance equation. The
unsteady analysis is based on a linearization of the Euler equations about the mean
flow. High-frequency incident vortical and entropic disturbances are considered, and
analogous to the subsonic counterpart of this problem, asymptotic regions around the
airfoil highlight the mechanisms that produce sound. Notably, the inner region round
the leading edge is of size O(k−1), and describes the interaction between the mean-flow
gradients and the incident gust and the resulting acoustic waves. We consider the
preferred limit in which kδ2/3 = O(1), and calculate the first two terms in the phase
of the far-field radiation, while for the directivity we determine the first term (δ = 0),
together with all higher-order terms which are at most O(δ2/3) smaller – in fact, this
involves no fewer than ten terms, due to the slowly-decaying form of the power series
expansion of the steady flow about the leading edge. Particular to transonic flow is
the locally subsonic or supersonic region that accounts for the transition between the
acoustic field downstream of a source and the possible acoustic field upstream of the
source. In the outer region the sound propagation has a geometric-acoustics form
and the primary influence of the mean-flow distortion appears in our preferred limit
as an O(1) phase term, which is particularly significant in view of the complicated
interference between leading- and trailing-edge fields. It is argued that weak mean-
flow shocks have an influence on the sound generation that is small relative to the
effects of the leading-edge singularity.

1. Introduction
The sound generated by the interaction between convected vortical and entropic

disturbances and rotating and stationary blades is a significant component of the total
noise emitted by modern aeroengines, and the understanding of the sound generation
by gust–blade interaction for a single airfoil is essential for any prediction of turboma-
chinery noise. The influence of steady-flow distortion due to airfoil thickness, camber
and incidence on the noise generation is well-recognised, especially for high-frequency
disturbances, and an increasing emphasis is placed on these effects in noise prediction
models. Far-reaching analytical results have been achieved for subsonic flow (Myers
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Figure 1. Gust–airfoil interaction in transonic flow. The solution will consist of inner asymptotic
regions A–E and the outer region (comprising the rest of space).

& Kerschen 1995, 1997; Peake & Kerschen 1997), and here we focus instead on the
practically relevant case in which the mean flow around the airfoil is transonic.

Transonic unsteady aerodynamic methods rely largely on numerical codes for
nonlinear unsteady flow (Hu & Kandil 1994, and references therein), as well as codes
based on a linearization of the Euler equations about a steady mean flow (Verdon &
Caspar 1984; Hall, Clark & Lorence 1994). However, numerical approaches encounter
difficulties at high frequency, and some results have been achieved analytically using
the linearized unsteady transonic small-disturbance equation. Landahl (1989) derives
this equation and describes its solution for an isolated airfoil, whereas Surampudi
& Adamczyk (1986) consider a two-dimensional cascade of blades, both assuming a
uniform mean flow at Mach number equal to one.

In this paper we consider the unsteady flow around a thin cambered airfoil by
applying asymptotic methods, in the limit of high reduced frequency k and small
camber and thickness (typical size O(δ), with δ � 1), to the Euler equations linearized
about the steady transonic small-disturbance (TSD) flow. It mirrors a similar approach
used in the subsonic counterpart of this problem by Myers & Kerschen (1995, 1997)
and Tsai & Kerschen (1990), who consider the effects of incidence, camber and
thickness respectively on gust–airfoil interaction noise. Specifically, we consider the
preferred limit in which the free-stream Mach number, M∞, differs from unity by
O(δ2/3) (standard transonic limit), with kδ2/3 = O(1), which, as will be seen later,
will induce an O(1) phase distortion. We believe that Lighthill’s (1952) acoustic
analogy is not the most appropriate way to address the problem, since the acoustic
sources are not compact, but instead we apply the rapid distortion theory put
forward by Goldstein (1978), for linear unsteady disturbances to an irrotational
compressible steady flow. The distortion of vortical and entropic disturbances by
mean-flow gradients is accounted for exactly, while analytical expressions for the
volume sources in terms of mean-flow quantities can be found, and the result is an
inhomogeneous linear wave equation for an unsteady potential, G, with coefficients
that depend on the mean flow. In the limit of large reduced frequency, k, of the incident
gust and small mean-flow distortion, with the introduction of the mean-flow potential-
streamfunction coordinates (Kerschen & Balsa 1981) and with an incorporation of
the perfect-gas thermodynamic relations (Kerschen & Myers 1987), this equation is
simplified. The resulting boundary-value problem has a singular perturbation nature,
and it turns out that a number of asymptotic regions must be defined (see figure 1).

First, in the inner region A, which scales on the gust wavelength near the leading
edge, the gust–airfoil and gust–flow interactions comprise the basic sound production
mechanism. The leading-order transonic wave equation predicts singular behaviour of
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the unsteady solution directly above and below the leading edge in region B, which we
will refer to as the Mach-wave region. The acoustic waves generated in A propagate
into the outer region according to a transonic geometric-acoustics formulation, and
are rescattered by the airfoil trailing edge in region C , where, in contrast to the
leading edge, the mean-flow gradients are not significant and continuity of pressure
across the wake now determines the rescattered field. Region C continues into region
D along the wake sheet, which provides a transition between the geometric-acoustics
fields originating above and below the airfoil. A similar solution also propagates
along the airfoil surface in region E, but we will see that in our transonic problem,
in contrast to the case of strictly subsonic flow, this region has negligible effect. The
results found in each of the above inner regions are matched to a solution in the
outer region, thus providing an expression for the total acoustic far field. Here, the
presence of possible shock waves and the corresponding interaction with the gust
must also be considered, but for the weak shocks found in TSD flow this effect is
shown to be smaller than the influence of the mean flow near the leading edge. The
aim of all our analysis is to present, in parallel to Myers & Kerschen (1995) for
subsonic flow, an asymptotic expression for the far-field noise. We will determine the
first two terms in the expansion of the phase, where the second (non-uniform flow)
term is O(kδ2/3) = O(1). In the directivity we will determine all higher terms which
are at most O(δ2/3) smaller than the leading-order (δ = 0) directivity. In fact, due to
the form of the expansion of the steady flow around the leading edge, we will have
to determine ten directivity terms.

In § 2, the steady TSD flow about the airfoil is described, including a local ap-
proximation of the leading-edge singularity. The equations that govern the unsteady
disturbance to this mean flow are formulated in § 3, followed in § 4 by an examination
of the sound generation near the leading edge. Propagation of the acoustic waves is
described using a geometric-acoustics formulation in the outer region, as put forward
in § 5, while the rescattering at the trailing edge and the transition across the wake
sheet are considered in § 6. The effects of shock waves and of the curvature of the
airfoil surface are also discussed in this section. In § 7, a numerical study illustrates
the effects of gust and mean-flow parameters on the far-field directivity patterns and
the total radiated power, and a comparison is made between our transonic theory
and the parallel subsonic theory of Myers & Kerschen (1995).

2. Steady flow
We consider a single, two-dimensional airfoil aligned along the x∗-axis from x∗ = 0

(leading edge) to x∗ = 2b (trailing edge). In the coordinate system (x, y) normalized
by the airfoil semi-chord b, the profile’s upper and lower surfaces are y = δN±(x)
for 0 6 x 6 2, and are such that the airfoil has O(δ) thickness, camber and angle of
attack with δ � 1. The leading edge is parabolic in shape so that

N± = ±(2R)1/2x1/2 + s±x+ o(x), x ↓ 0, (2.1)

where R is the leading-edge radius non-dimensionalized by δ2b and s± are two
constants that depend on the airfoil geometry and angle of attack. The uniform
oncoming flow travels in the positive x-direction with velocity u∞ = (U∞, 0), the
upstream Mach number is M∞ = U∞/a∞, where a∞ is the upstream speed of sound,
and p∞, ρ∞ and S∞ denote the far-field pressure, density and entropy respectively. The
Prandtl–Glauert factor β2∞ = 1−M2∞ is small, but may be positive or negative.

We assume that the mean flow is that of an isentropic perfect gas with S∞ = 0,
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and that it is described by the normalized steady potential φ and streamfunction ψ
(both normalized by U∞b). We write φ = x+ φ′, and for transonic small-disturbance
(TSD) flow β2∞ and the normalized disturbance potential φ′ are taken to have the
preferred magnitude O(δ2/3). This is rewritten as φ′ = δ2/3ϕ′, where ϕ′ satisfies the
TSD equation [

K − (γ + 1)
∂ϕ′

∂x

]
∂2ϕ′

∂x2
+
∂2ϕ′

∂ỹ2
= 0, (2.2)

with the thin-airfoil boundary condition

∂ϕ′

∂ỹ
(x, 0±) =

dN±

dx
(x), 0 < x < 2, (2.3)

where γ is the ratio of specific heats, the transverse coordinate is stretched to ỹ = δ1/3y,
and K = β2∞M−1∞ δ−2/3 is the transonic similarity parameter (see Cole & Cook 1986).
The steady circulation around the airfoil induces a discontinuity in the disturbance
potential ϕ′ across the wake, leading to the condition

δ2/3ϕ′(x, 0+)− δ2/3ϕ′(x, 0−) = Γ , x > 2. (2.4)

Here, U∞bΓ = O(δ2/3) is the circulation, which must be determined as part of the
solution. In addition, the steady Kutta condition of smooth velocity at the trailing
edge leads to

∂ϕ′

∂x
(2, 0+)− ∂ϕ′

∂x
(2, 0−) = 0. (2.5)

The arbitrary constant in the definition of ϕ′ is chosen so that ϕ′ disappears at the
airfoil leading edge. Following Cole & Cook (1986), the far-field expansion of the
disturbance potential can be written as

δ2/3ϕ′(x, ỹ) = − Γ
2π

tan−1

(
K1/2ỹ

x

)
+
Γ

2
+ φ′(−∞, 0) + O

(
log r̃

r̃

)
, (2.6)

where r̃2 = x2 + Kỹ2 and the inverse tangent function jumps from 2π to 0 across
the positive x-axis. Equation (2.6) is used in the numerical solution as the far-field
boundary condition on the grid boundaries. Of significance to the unsteady analysis to
follow is the fact that mean-flow quantities vary slowly with the transverse coordinate
y, so that distortion of acoustic and convected waves is dominated by the O(δ2/3)
gradients of the mean flow in the streamwise direction.

The boundary-value problem specified by (2.2)–(2.6) for the steady flow can in
general only be solved numerically, and we apply the Engquist & Osher (1980) variant
of the Murman & Cole (1971) relaxation algorithm (see also Cole & Cook 1986).
The algorithm models the TSD equation using eight adaptations of the conventional
backward- and centred-difference schemes corresponding to the equal number of
possible states of the flow at any given gridpoint, as specified by the criteria formulated
by Engquist & Osher (1980); two specify strictly elliptic or hyperbolic behaviour, and
the remaining criteria define the behaviour near sonic-line and shock-wave points. The
Newton–Raphson method is employed to solve the nonlinear discretized equations
for successive columns of the grid, and a single relaxation iteration consists of a
sweep across the grid from the column furthest upstream to the column furthest
downstream. Local grid refinement leads to improved accuracy, while the application
of over-relaxation and under-relaxation at elliptic and hyperbolic points respectively
improves convergence. Figure 2 shows the pressure coefficient for a NACA 0006 airfoil
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Figure 2. Pressure coefficient for a NACA 0006 section at zero angle of attack
with varying Mach number.

(6% thickness) at zero angle of attack with M∞ = 0.80, M∞ = 0.90 and M∞ = 0.95;
the last two cases have shock waves attached to the upper and lower surfaces.

The primary influence of airfoil geometry and angle of attack on the generation of
sound is through the interaction between the (high-frequency) gust and the leading-
edge singularity, so the functional form of the steady disturbance potential ϕ′ close
to the leading edge is required. In Appendix A, ϕ′ is approximated locally using an
approach based on series solutions of the Tricomi equation. Successive exponents of
the fractional power series in x are closely spaced, and in order to achieve an accuracy
consistent with the approximations to be applied in the unsteady analysis, the series
is truncated after 10 terms at O(|x|), leaving

ϕ′(x, ỹ) =

9∑
j=0

c±j (sgn ỹ)j |x|bj + O(|x|, |x−1/2ỹ|), (2.7)

where the constants c+
j and c−j correspond to positive and negative x respectively, bj

increases with j and b0 = 2
3

(b9 is the last element in the sequence bj which is less than
unity). The terms in the summation are alternately even and odd in ỹ. Expressions
for the constants c±j and bj are given in Appendix A.

3. Unsteady flow – formulation
The unsteady flow is taken as an O(ε) perturbation to the mean flow, and we require

0 < ε � δ2/3 in order to linearize the unsteady flow about the non-uniform mean
flow. One physical consequence of this ordering is that the leading-edge stagnation
point remains fixed to the asymptotic order considered when the gust is imposed.
This approximation would obviously break down for strong vortical forcing. The
total local flow speed, velocity, Mach number, speed of sound, pressure, density and
entropy are then denoted as U, u,M, a, p, ρ and S respectively, and we use the same
variables with subscript 0 to denote the mean-flow properties, and with a prime to
denote the unsteady perturbations to the mean flow; for example, p = p0 +εp′+O(ε2).
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We follow Goldstein (1978) and write the unsteady velocity in the form

u′ = ∇G′ + v′, (3.1)

where v′ contains the vorticity fluctuations (the upstream disturbance as well as
vorticity generated further downstream) and G′ contains the non-vortical components
of the unsteady field including the acoustic waves. Neglecting O(ε2) terms it turns out
that the velocity v′ satisfies a modified form of the linearized momentum equation
that can be integrated exactly using the method of characteristics, while the unsteady
potential G′ satisfies an inhomogeneous wave equation with variable coefficients (see
Myers & Kerschen 1995). Although v′ contains the vortical motion of the fluid
including the gust at upstream infinity, it is in general not divergence free. However,
it represents unsteady motion that is convected with the local mean-flow velocity, so
any acoustic motion is represented by G′, which depends on the vortical fluctuations
through the rigid-body boundary condition applied on the airfoil surface, and through
the source term in the wave equation. The sound propagation is influenced by the
mean flow according to the spatial variation of the coefficients on the left-hand side
of the wave equation.

As in Myers & Kerschen (1995), it is convenient to convert from physical coordi-
nates (x, y) to the non-dimensional potential-streamfunction coordinates (φ, ψ). The
arbitrary constants in φ and ψ are chosen such that the leading edge at the origin in
(x, y) maps to the origin in (φ, ψ)-space. A result of this coordinate transformation
is that the boundary condition on the airfoil surface becomes a boundary condition
along a section of the φ-axis. Since φ = x + O(δ2/3) and ψ = y + O(δ2/3), we may
write φ′(x, ỹ) = φ′(φ, ψ̃) + O(δ4/3) for the steady perturbation φ′ to the uniform-flow
potential induced by the airfoil, where ψ̃ = δ1/3ψ. As a result of the blade circulation,
the trailing edge is mapped onto two points in (φ, ψ)-space, with (2,±0)→ (φ±TE,±0)

and φ+
TE − φ−TE = Γ . The constants φ±TE must be determined from the numerical

solution of the steady flow.
The incident gust is now introduced by applying a boundary condition at φ =
−∞. Although the airfoil is taken to be two-dimensional, with a geometry and
corresponding mean flow independent of the spanwise coordinate, z, the incident
gust may have spanwise components. It is assumed that in the reference frame of
the airfoil the upstream disturbance can be decomposed into harmonic waves, and
consequently we need consider only one such component of frequency ω, namely

v′ ∼ U∞(At, An, A3)e
ik(φ+knψ+k3 z̃−t̃),

s′ ∼ 2cpBeik(φ+knψ+k3 z̃−t̃), φ→ −∞,

}
(3.2)

where k = ωb/U∞ is the aerodynamic reduced frequency, z̃ = z/b is the non-
dimensional spanwise coordinate and t̃ is time normalized by b/U∞. Far upstream,
the uniform flow conditions and mass conservation imply that v′ must be divergence
free, and hence

At + Ankn + A3k3 = 0. (3.3)

Kerschen & Balsa (1981) derived a closed-form expression for v′ that satisfies this
upstream boundary condition. For transonic small-disturbance flow, it describes an
O(δ2/3) perturbation to the incident plane waves (3.2), except near the leading edge
where the mean-flow singularity induces a larger perturbation. Using this expression,
the change of variable

G′(φ, ψ, z̃, t̃) = U∞bG(φ, ψ)eik(k3 z̃−t̃)eikgl (3.4)
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and the linearized perfect-gas relations, Goldstein’s wave equation becomes

∂2G

∂ψ2
+ 2ik

∂G

∂φ
+ k2(1− k2

3)G+

[
2ik(γ + 1)q − 2ikβ2

∞ − (γ + 1)
∂q

∂φ

]
∂G

∂φ

+

[
k2(γ − 1)q − k2β2

∞ + ik(γ − 1)
∂q

∂φ

]
G+ [β2

∞ − (γ + 1)q]
∂2G

∂φ2
= S(φ, ψ)eikχ(φ,ψ),

(3.5)

with the source term on the right-hand side given by

S = 2ikA∗t q + 2A∗t
∂q

∂φ
,

χ = φ+ knψ + g(φ, ψ̃)− gl,
A∗t = At − B.

The function g(φ, ψ̃) is Lighthill’s drift function, and following Myers & Kerschen
(1995) this can be approximated by

g(φ, ψ̃) ∼ gl − 2φ′(φ, ψ̃) (3.6)

for a steady potential flow that is a small perturbation to uniform flow. The constant
gl = g(0, 0) ∼ 2φ′(−∞, 0) is the leading-edge drift, a measure of the phase distortion
of waves convecting from upstream to the leading edge, and

q =
U0

U∞
− 1 ∼ ∂φ′

∂φ
(3.7)

is the non-dimensional mean-flow perturbation speed. Near the leading edge, q and
g can be approximated using (2.7). The boundary condition of zero normal velocity
on the airfoil surface becomes

∂G

∂ψ
= −Aneikχ(φ,0±), ψ = ±0, 0 6 φ 6 φ±TE. (3.8)

In deriving (3.5) we use the fact that q and its derivatives with respect to φ are
O(δ2/3), whereas each derivative with respect to ψ is a factor δ1/3 smaller. The most
striking difference between (3.5) and its subsonic counterpart is that here the Gφφ
term is asymptotically small (recall that q, β2∞ = O(δ2/3)) and will only act as a
higher-order forcing term to the O(1) parabolic wave operator in the larger part of
the flow domain.

Following the transformation (3.4) it is convenient to also define a modified un-
steady pressure p̄ according to

p′(φ, ψ, z̃, t̃) = ρ∞U2
∞p̄(φ, ψ)eik(k3 z̃−t̃)eikgl , (3.9)

so that

p̄ = ikG− ∂G

∂φ
− q

(
ikG+

∂G

∂φ

)
. (3.10)

In the following sections, we investigate the noise mechanisms in the outer region
and in the inner regions referred to in figure 1. On the O(1) scale of the outer region,
the high-frequency gust–airfoil interaction can be regarded as inducing point sources
near the airfoil edges, and ray fields Gl and Gt emanating from the edges then describe
the propagation of the sound through the mean flow. The outer flow also consists of
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a particular solution, Gp, that accounts for the distribution of volume sources as given
by the source terms of (3.5), and a complementary solution, Gc, that ensures that the
boundary condition along the airfoil surface is satisfied. An additional ray field, Gw ,
that corresponds to inner region D and that renders the trailing-edge scattered field
uniformly valid across the wake will also be calculated. In principle, there is also a
term, Gs, arising from the interaction between the gust and any steady shocks. We
therefore write the total outer solution Gtot as

Gtot = Gp + Gc + Gl + Gt + Gw + Gs. (3.11)

Acoustic waves with amplitudes of order k−3/2 and k−2, corresponding to the
leading-order terms in the solutions Gl and Gt respectively, will be calculated in
the subsequent analysis, along with higher-order terms due to mean-flow effects. The
latter will be of order δ2/3k1−bj relative to the leading (δ = 0) term in Gl for bj ranging
from 2

3
to just less than 1, corresponding to the terms in the local expansion of the

leading-edge singularity given in (2.7). From this it follows that δ2/3k1/3 � 1 is a
condition required for asymptotic consistency. Indeed, the mean flow near the leading
edge is modelled using the thin-airfoil approximation which breaks down in an O(δ2)
region around the stagnation point, implying that the disturbance wavelength should
not be so small as to significantly interact with this local flow. That is, the gust is
influenced by the leading-edge singularity but cannot discern the distance between
the leading edge and the stagnation point, or alternatively, δ2 � 1/k � 1. Amplitude
terms of order δ2/3, δk1/2, δ4/3k2/3 and 1/k relative to the leading-order solution are
neglected. The terms retained in the phase of the outer solution are of order k, δ2/3k,
and here we neglect O(δk) terms. Of particular interest is the case k = O(δ−2/3), for
which the higher-order phase term is O(1). For an examination of gust–mean flow
interaction in the high-frequency TSD regime, this is indeed the preferred scaling
relating k and δ, though in all expressions to follow we distinguish between these
two independent parameters in order to help clarify which physical mechanisms are
represented.

The following calculations for the various asymptotic regions are quite lengthy, and
the reader may refer to the beginning of § 7 for a summary of the results.

4. Leading-edge region A
We assume that the size of the leading-edge region A scales on the gust wavelength

and define the inner variables

Φ = kφ, Ψ = kψ, H = kGe−i(1−k2
3)Φ/2, R = kr. (4.1)

The local expansions of q and g are substituted in (3.5), resulting in an equation
whose leading-order terms define a constant-coefficient linear parabolic operator on
H and whose higher-order terms are O(k1−bj δ2/3) for j ranging from 0 to 9. A correct
asymptotic expansion of the solution H is

H = H0 +

9∑
j=0

(Hj
1 +H

j
2 +H

j
3)δ2/3k1−bj +H4β

2
∞, (4.2)

where we label the components with subscripts 0 to 4 not only to manage the
asymptotics and other mathematical features of the problem, but also to distinguish
between the different physical mechanisms that determine those solutions.
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4.1. Flat-plate solution H0

The solution H0 corresponds to the sound generation by a flat-plate airfoil with
semi-infinite chord at zero angle of attack to a uniform oncoming flow of M∞ = 1,
and is determined by solving a special case of the boundary-value problem

L(H̃) ≡ ∂2H̃

∂Ψ 2
+ 2i

∂H̃

∂Φ
= 0,

∂H̃

∂Ψ

∣∣∣∣
Ψ=0± ,Φ>0

= C(sgn Ψ )lΦαeiw2Φ/2; (4.3)

namely the special case for which C = −An, l = 0 and α = 0. Here, l is an
integer, w2 = 1 + k2

3 and we write H̃(Φ,Ψ ) for the solution of (4.3) that satisfies the
radiation condition of out-going waves at infinity. The same boundary-value problem
with different values for C , l and α also appears when other components of the inner
solution are determined. Note that in this inner region of the potential-streamfunction
coordinate system the airfoil upper and lower surfaces lie on the positive Φ-axis with
0 6 Φ < ∞.

The solution H̃ is determined by Fourier transforming (4.3) with respect to Φ and
applying the Wiener–Hopf technique, together with the radiation condition and the
conditions that the velocity is everywhere continuous and the pressure is everywhere
continuous except across the airfoil. The result is

H̃(Φ,Ψ ) =
CΓ (α+ 1)(sgn Ψ )l+1eαπi+3πi/4

23/2π

∫ ∞
−∞

[−i(s− w2/2)]−α−1ea(s,Φ,Ψ )

(−is)1/2
ds, (4.4)

where

a(s, Φ,Ψ ) = iΦs+ eπi/4|Ψ | (−2is)1/2 , (4.5)

and where the square-root and other fractional powers of the form zb, for complex
values z and real constants b, are assigned principal values according to 0 6 arg (z) <
2π (i.e. (−is)1/2 is discontinuous across the positive imaginary axis in the s-plane).
The inversion contour is the real axis deformed below the branch points at s = 0 and
at s = w2/2. The integrand in (4.4) is analytic in the lower half-plane, and it follows
that H̃ = 0 for Φ < 0 and α > − 3

2
. The solution therefore predicts zero radiation

upstream of the leading edge, as expected in sonic mean flow. We are interested in
the behaviour of our inner solution in the outer limit R →∞, so we require the outer
expansion of (4.4). Standard application of the method of steepest descent reveals
that

H̃(Φ,Ψ ) ∼ CD̃(θ, α)H(φ)(sgnψ)l+1eikψ2/2φ

(kφ)1/2
as R →∞, (4.6)

where

D̃(θ, α) = − (2i)α+1eπi/4Γ (α+ 1)

(2π)1/2 (tan2 θ + w2)α+1
, (4.7)

H(·) is the unit step function and θ = tan−1(ψ/φ) is the polar angle with 0 6 θ < 2π.
When α = 0 the expression (4.4) can be evaluated to give the zeroth-order solution

H0 exactly in terms of the complementary error function erfc(z), specifically

H0(Φ,Ψ ) =
Ane

iw2Φ/2

2w sgn (Ψ )

{
e−w|Ψ | erfc

[
e−πi/4(|Ψ | − iwΦ)

(2Φ)1/2

]

−ew|Ψ | erfc

[
e−πi/4(|Ψ |+ iwΦ)

(2Φ)1/2

]}
. (4.8)
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Consistent with (4.6), (4.7) this leads to the outer expansion

H0 ∼ D0(θ)H(φ)eikψ2/2φ

(kφ)1/2
, D0(θ) = −An sgn (Ψ )D̃(θ, 0). (4.9)

For Φ ↓ 0 (4.8) behaves like H0 ∼ Φ3/2Ψ−2eiΨ 2/2Φ, and its derivative with respect
to Φ is unbounded and exhibits rapid oscillations. This is the erratic behaviour
described in Landahl (1989) that is due to a discontinuity in the strength of the
disturbances when cancellation of neighbouring receding waves does not occur. The
linearized equation for sonic flow cannot account for these receding waves and
therefore predicts a solution that is physically inadmissible near the Φ-axis. Terms
that describe a deviation from M∞ = 1 will cancel the singularity and allow the
possibility of upstream travelling waves, and this will be presented in § 4.5.

4.2. Distortion of the gust: Hj
1

The solutions Hj
1 from (4.2) are included to satisfy the inhomogeneous terms in

the boundary condition (3.8), which arise when an inner expansion is made of the
phase χ(φ, 0±) (this involves expanding the drift function near the leading edge, and
hence introduces the local series expansion of the steady flow (2.7)). The Hj

1 therefore
represent the effects of the non-uniform mean flow close to the leading edge on the
incident vortical velocity. To determine Hj

1 we set C = 2ic+
j An, l = j and α = bj for

j = 0, . . . , 9, in (4.3). Using (4.6) we thereby find that the distortion of the gust by the
jth component of the local mean flow (2.7) leads to

H
j
1 ∼ D

j
1(θ)H(φ)eikψ2/2φ

(kφ)1/2
, D

j
1(θ) = 2ic+

j An(sgnψ)j+1D̃(θ, bj), (4.10)

as R →∞.

4.3. Volume sources: Hj
2

The local solutions Hj
2 in (4.2) are included to account for the source term on the

right-hand side of (3.5). The equation satisfied by Hj
2 is

L(Hj
2) = 2bjc

±
j A
∗
t (sgnΨ )j [i|Φ|bj−1 sgn (Φ) + (bj − 1)|Φ|bj−2]eiw2Φ/2+iknΨ , (4.11)

with ∂H
j
2/∂Ψ = 0 on Ψ = 0±, Φ > 0, where the operator L is as defined in (4.3). A

particular solution, Hj
2p, is obtained by taking the double Fourier transform of (4.11),

solving for the transform of Hj
2p and then inverting back to the φ, ψ coordinates. We

leave the latter inverse Fourier transform unevaluated in order to simplify subsequent
calculations, giving

H
j
2p(Φ,Ψ ) = −

∫ ∞
−∞

f(s)ds

4π

{
eiknΨ+iΦs(sgn Ψ )j

s+ k2
n/2 + ε′ikn sgn (Ψ )

+ea(s,Φ,Ψ )

[
sgn (Ψ ) +

eπi/4kn

(−2is)1/2

] [
πiδ(s+ k2

n/2)

sgn (kn)
− H((−1)j+1)

s+ k2
n/2− ε′ikn

]}
,

(4.12)

where a(s, Φ,Ψ ) is given by (4.5), δ(·) is the Dirac delta function and

f(s) = 2iebjπiA∗t Γ (bj + 1)(1 + s− w2/2)

×{c+[−i(s− w2/2)]−bj − c−[i(s− w2/2)]−bj
}
. (4.13)
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The parameter ε′ in (4.12) is taken in the limit ε′ ↓ 0 and is introduced by giving the
right-hand side of (4.11) a small artificial decay through an additional factor e−ε′ |Ψ |
to ensure convergence of the Fourier integrals. In the expression (4.12) it indicates
whether the integration contour is indented below or above the pole at s = −k2

n/2,

depending on the signs of kn and Ψ . The far-field expansion of Hj
2p consists of three

components: the contributions from the branch cuts of the first term inside the curly
brackets in (4.12) represent hydrodynamic motion that convects with the mean flow;
the branch cuts of the terms involving H((−1)j+1) provide the scattering due to the
mean-flow discontinuity across Ψ = 0 when that component of the mean flow is
anti-symmetric about Ψ = 0; and the remaining terms involving the delta function
plus the various pole contributions represent plane acoustic waves generated across
the mean-flow discontinuity at Φ = 0. In that order we find, by applying the method
of steepest descent, that

H
j
2p ∼ −

2ibjc
±
j A
∗
t |kφ|bj−1

k2
n + w2

(sgn φ)(sgnψ)jeikw2φ/2+ikknψ

+
Dj
p(θ)H(φ)eikψ2/2φ

(kφ)1/2
+ H(φ)Lje

ik(knψ−k2
nφ/2)

× {(− sgn kn)
jH(k2

n − tan2 θ) + (sgnψ)jH(tan2 θ − k2
n)
}

(4.14)

as R →∞, where

Dj
p(θ) =


0, j even

eπi/421/2

π1/2(kn − tan θ)
P+
j (θ), j odd

(4.15)

for tan θ 6= kn. Also,

P±j (θ) = c±j A
∗
t 2
bj−1Γ (bj + 1)e±bjπi/2(1− k2

3 − tan2 θ)
(
tan2 θ + w2

)−bj
, (4.16)

Lj = P+
j (θg)− P−j (θg), and θg = tan−1 kn is the gust orientation angle. The first term

on the right-hand side of (4.14), the hydrodynamic component, satisfies the non-
homogeneous equation (4.11) and does not contribute to the sound field, whereas
the other two terms satisfy the homogeneous form of this equation and represent
acoustic waves. When θ approaches the gust angle θg , it turns out that the saddle
point associated with the method of steepest descent approaches the pole s = −k2

n/2
of the integrand in (4.12), so the expansion (4.15) is singular. A uniform expansion of
H
j
2p cannot satisfy the correct radiation condition because the inner-region equations

do not take into account the decay of the volume sources with increasing |ψ| (i.e.
the steady-flow expansion (2.7) is independent of |ỹ| in the inner region), and this
will necessitate a further treatment of the particular solution in the outer region.
Depending on the signs of kn and Ψ , the pole may or may not be crossed when the
integration contour is transformed onto the path of steepest descent, explaining the
presence of a phase jump of the plane wave across tan θ = kn when the corresponding
component of the mean flow is anti-symmetric. It is apparent from the phase of the
third term in (4.14) that the plane-wave disturbances propagate in the direction given
by the gust angle θg .

The two acoustic components of Hj
2p (i.e. the second and third terms in (4.14)) exist

downstream of the leading edge only. The scattered field (the second term) exists for
odd j only (see (4.15)), and provides the transition that allows for the phase jump of
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the plane waves across tan θ = kn. We note also that the hydrodynamic component
(the first term in (4.14)) has a |Φ|bj−1 singularity that is stronger than the singularity
associated with H0, indicating that the asymptotic expansion (4.2) breaks down when
Φ→ 0. By rescaling Φ such that the leading-order expansion of (3.5) includes the Gφφ
term, a local solution is obtained that is continuous across Φ = 0 and that confirms
the presence of this singularity (see Appendix B).

The complementary solution H
j
2c that cancels the normal velocity induced by Hj

2p

consists of a reflected component and a diffracted component. We calculate the far
field of the complementary solution directly as follows. The velocity that must be
cancelled on Ψ = 0 for Φ > 0 is found by differentiating (4.12) under the integral
sign and setting Ψ = 0. The function h(s) is defined by rewriting the result as

∂H
j
2c

∂Ψ

∣∣∣∣∣
Ψ=0

=
−1

2π

∫ ∞
−∞
h(s)eisΦds ≡ − ∂H

j
2p

∂Ψ

∣∣∣∣∣
Ψ=0

. (4.17)

The Wiener–Hopf technique followed by the method of steepest descent then gives
the outer expansion of Hj

2c in the form

H
j
2c ∼

D
j
2c,tot(θ)H(φ)eikψ2/2φ

(kφ)1/2

− sgn (knψ)(− sgn kn)
jLje

ik(|knψ|−k2
nφ/2)H (k2

n − tan2 θ), (4.18)

where

D
j
2c,tot(θ) = −e−πi/4 sgn (ψ)

(2π)3/2

∫ ∞
−∞

h(s)ds

s+ 1
2

tan2 θ + ε′i
. (4.19)

The plane waves given by the second term on the right-hand side of (4.18) appear
when the deformation of the path of integration of the Fourier inversion integral
crosses the pole at s = −k2

n/2. Because the diffraction of the plane-wave component

of Hj
2p is unbounded at θ = θg and we anticipate a cancellation of this singularity by

components of the trailing-edge field, we isolate the corresponding directivity Dj
2c,sin

and write Dj
2c,tot = D

j
2c,sin +D

j
2c. After considerable calculations and noting that c−j = 0

for odd j, the results

D
j
2c(θ) =

21/2eπi/4kn(sgn ψ)j+1

π1/2(k2
n − tan2 θ)

[
P+
j (θ)− P+

j (θg)
]

+
21/2eπi/4

π1/2(k2
n − tan2 θ)

[
2knH(knψ)P+

j (θg)− (tan θ + kn)P
+
j (θ)

]
j odd

(4.20)

and

D
j
2c,sin = −21/2knLje

πi/4(− sgn kn)
j sgn (ψ)

π1/2(tan2 θ − k2
n)

(4.21)

are found. The first term on the right-hand side of (4.20) represents the diffraction of
the hydrodynamic component of Hj

2p and the second term is the diffraction of the Dj
p

component of Hj
2p. Both terms are well-behaved for θ near θg . The local analysis here

predicts a singularity in Dj
2c,sin because in the inner region the airfoil chord is infinite,

and no account is therefore taken of the fact that the plane waves are reflected over
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only a finite chord. This singularity will be removed by including the effects of the
trailing edge in § 5.4.

4.4. Distortion of the acoustic field: Hj
3

The solutions H
j
3 in (4.2) represent the influence of the variable-property steady

medium on the acoustic propagation, and involve the terms on the left-hand side of
(3.5) that depend on q. The problem is

L(Hj
3) = (γ + 1)c+

j bj(sgnΨ )jΦbj−2

{
Φ
∂2H0

∂Φ2
+ [(bj − 1)− iw2Φ]

∂H0

∂Φ

+

[
2Φ

(γ + 1)
+

2i(bj − 1)

(γ + 1)
− iw2(bj − 1)

2
− w4Φ

4

]
H0

}
, (4.22)

with again ∂Hj
3/∂Ψ = 0 along the positive Φ-axis. Using the fact that the right-hand

side of (4.22) comprises products of solutions of L(H) = 0 and functions of Φ, a
particular solution Hj

3p is obtained by integrating those functions of Φ and multiplying

by −i/2. By evaluating the derivatives of H0 using (4.8), the result is simplified to

H
j
3p = c+(sgn Ψ )jΦbj−1(bj − iΦ)H0 − (γ + 1)c+eπi/4An(sgn Ψ )j+1

4 (2π)1/2

× [w2Φ+ (2bj − 1)i +Ψ 2/Φ
]

H(Φ)Φbj−3/2eiΨ 2/2Φ. (4.23)

A complication has been introduced by the fact that Hj
3p is more singular than H0 in

the limit R ↓ 0 for the values of bj considered; the former behaves like Rbj−3/2 while
from (4.8) the latter behaves like R1/2 (recall that bj < 1 for the leading-order terms
considered). This implies that the asymptotic expansion (4.2) breaks down sufficiently
close to the leading edge, and it corresponds to the last term on the left-hand side
of (3.5) being of order of magnitude greater than or equal to that of the first. When
the singularity in H

j
3p is of degree bj − 1

2
or weaker, there is no inconsistency and it

merely signifies the existence of another asymptotic region. On the other hand, if the
singularity is any stronger, the series (4.2) breaks down even at R of order greater
than that for which the expansion of (3.5) breaks down. The singularity in H

j
3p is

therefore mathematically inadmissible, represents unphysical behaviour and must be
cancelled by an eigensolution H

j
3e. In Appendix B, this eigensolution is derived by

an analysis of the above-mentioned asymptotic region that includes the limit R ↓ 0.
The scaling that gives the greatest overlap and that is chosen in the Appendix is one
for which Φ is small and of an order that depends on bj , while Ψ 2/Φ is kept O(1).
Rather than calling this inner region within the leading-edge region A the ‘inner-inner
region’, it will be referred to as the ‘Mach-wave region’ or region B. The result of
the Mach-wave region analysis is that the eigenfunction which must be introduced in
order to cancel the unphysical singularity in Hj

3p is

H
j
3e(Φ,Ψ ) = Ej(sgnΨ )j+1Φbj−3/2M

(
3
2
− bj, 1

2
, iΨ 2/2Φ

)
H(Φ), (4.24)

where M is Kummer’s confluent hypergeometric function, and

Ej =
(γ + 1)c+e−πi/4An(1− 2bj)

4 (2π)1/2
. (4.25)

The final component of Hj
3 is the complementary solution Hj

3c that ensures that the
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velocity

∂H
j
3p

∂Ψ

∣∣∣∣∣
Ψ=0

= Anc
+(sgnΨ )j(iΦbj − bjΦbj−1)eiw2Φ/2 (4.26)

of the particular solution is cancelled on the airfoil surface. It is determined by
substituting the appropriate values C = iAnc

+, l = j, α = bj (the first term in (4.26))
and C = −bjAnc+, l = j, α = bj − 1 (the second term in (4.26)) in the boundary-value

problem (4.3). Consequently, the solution H
j
3 is Hj

3 = H
j
3p + H

j
3e + H

j
3c, and applying

standard results for the far-field expansion of (4.24) (see Abramowitz & Stegun 1972)
and (4.6), (4.7) for the far-field expansion of Hj

3c, we find that

H
j
3 ∼ D

j
3(θ)H(φ)eikψ2/2φ

(kφ)1/2
+

H(φ)(sgnψ)j ic+
j D0(θ)eikψ2/2φ

8(kφ)1/2−bj
[
(γ + 1)(tan2 θ + w2)2 − 8

]
,

(4.27)

as R →∞, where

D
j
3(θ) = An(sgn ψ)j+1c+

j [bjD̃(θ, bj − 1)− iD̃(θ, bj)]

+
i2bj−1(sgnψ)j+1Eje

−bjπi/2π1/2

Γ ( 3
2
− bj)| tan θ|2bj−2

. (4.28)

The second term on the right-hand side of (4.27) behaves like rbj−1/2 in the limit
r → ∞, does not represent additional sound generation, and will be matched with
phase terms of the leading-edge ray field in the outer region. By contrast, the first
term in (4.27) represents sound generation due to the interaction between H0, the
mean flow and the airfoil. In (4.28) we distinguish the diffraction of the particular
solution (first term) from the acoustic field generated by the H0–mean flow interaction
directly (second term). The former is derived from the complementary solution H

j
3c

and is symmetric in ψ when j is even, while the latter is the outer expansion of Hj
3e

and is symmetric when j is odd.

4.5. Variable oncoming-flow speed: H4

The final component of the inner solution (4.2) describes the influence of the deviation
of the upstream Mach number from one, and satisfies the boundary value problem

L(H4) = −∂
2H0

∂Φ2
+ iw2 ∂H0

∂Φ
+
w4

4
H0,

∂H4

∂Ψ

∣∣∣∣
Ψ=0

= 0. (4.29)

A particular solution is obtained by multiplying the right-hand side of (4.29) by
−iΦ/2, and we find that the result

H4p(Φ,Ψ ) =
Ane

−πi/4

4 (2π)1/2
sgn (Ψ )H(φ)Φ−1/2eiΨ 2/2Φ

− iD0(θ)

8
(tan2 θ + w2)2H(φ)Φ1/2eiΨ 2/2Φ (4.30)

already satisfies the boundary condition. As encountered in the calculations for H3,
there is an inadmissible singularity in H4p near the leading edge and an eigensolution
must be included. Again, equation (3.5) is rescaled to the Mach-wave region defined
here by the inner variables ξ = Φ/β2∞, η = Ψ/β∞, resulting in the boundary-value
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problem

∂2G
∂ξ2

+
∂2G
∂η2

+ 2i
∂G
∂ξ

= 0,
∂G
∂η

∣∣∣∣
η=0± , ξ>0

= −Anβ∞
k

, (4.31)

where G is the unsteady potential G in the Mach-wave region. Using the Wiener–Hopf
technique, this problem is solved exactly to give

G(ξ, η) =
Anβ∞ sgn (η)

k
{π−1/2eπi/4(ρ+ ξ)1/2ei(ρ−ξ) − |η| erfc [e−πi/4(ρ− ξ)1/2]},

(4.32)

where ρ2 = ξ2 +η2. The matching between (4.30) and (4.32) is consistent if we include
an additional eigensolution that cancels the first term on the right-hand side of (4.30);
indeed, this term is a special case of the eigensolution (B 7), namely that for which
A = τ = C2 = 0 and b = 1. The other part of (4.30) is singular for R → ∞ and
matches with terms of the inner expansion of the leading-edge ray field, and we
therefore conclude that the deviation of the oncoming flow from M∞ = 1 does not
result in additional sound waves.

Of related interest is the approximation of G at large distances from the leading
edge found by expanding (4.32) for large ρ and writing the result in coordinates φ
and ψ:

G ∼ − Ane
−πi/4β2∞

2π1/2 sgn(ψ)k3/2

× [(1 + β2∞ tan2 θ)1/2 + sgn (φ)]1/2

|φ|1/2[(1 + β2∞ tan2 θ)1/2 − sgn(φ)]
eik[(1+β2∞ tan2 θ)1/2−sgn(φ)]|φ|/β2∞ . (4.33)

When tan θ is O(1), G can be further expanded for small β2∞ to give an expression
that will match with the leading-edge ray field when φ is positive and that contains
the small factor β3∞ when φ is negative. The transonic approximation had already
established that there is no significant radiation upstream of the leading edge, but
this subsonic ‘transition solution’ demonstrates that the upstream radiation is O(δ),
which is smaller than all the terms which are being retained in the downstream
directivity. As expected of receding waves, the phase term in (4.33) is large, specifically
O(kδ−2/3).

5. Outer region
5.1. Leading-edge ray field Gl

We now apply ray theory to the parabolic wave equation (3.5) in order to determine
how the sound emitted from the leading edge reaches the far field. We introduce a
‘fast’ variable σ = ikσ̄(φ, ψ) for some σ̄, substitute Gl = Gl(φ, ψ; σ) into (3.5) and set
the corresponding equations at each order in k to zero; at O(k2) this gives the eikonal
equation, (

∂σ̄

∂ψ

)2
∂2G

∂σ2
+ 2

∂σ̄

∂φ

∂G

∂σ
− (1− k2

3)G = 2[β2
∞ − (γ + 1)q]

∂σ̄

∂φ

∂G

∂σ

−[β2
∞ − (γ − 1)q]G− [β2

∞ − (γ + 1)q]

(
∂σ̄

∂φ

)2
∂2G

∂σ2
, (5.1)
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and at O(k) the transport equation,

2
∂σ̄

∂ψ

∂2G

∂σ∂ψ
+
∂2σ̄

∂ψ2

∂G

∂σ
+ 2

∂G

∂φ
= O(δ2/3). (5.2)

We have seen in the preceding analysis (see (4.9) with (4.1), for example) that the
phase variable σ̄ must behave like

σ̄ = ψ2/2φ+ φ(1− k2
3)/2 + O(δ2/3) (5.3)

for sources concentrated near the leading edge. It follows from the transport equation
that Gl = A(θ)r−1/2eikσ̄(φ,ψ) is a suitable geometric-acoustics description of the flow for
some function A(θ), while examination of the eikonal equation reveals that

Gl =
Dl(θ)H(φ)

k3/2φ1/2
eik[V1(θ)φ+V2(θ)φ′(φ,ψ̃)], (5.4)

where Dl(θ) is an arbitrary directivity function and

V1(θ) = 1
2
(tan2 θ + 1− k2

3)− 1
8
(tan2 θ + w2)2β2∞, (5.5)

V2(θ) = 1
8
(γ + 1)(tan2 θ + w2)2 − 1, (5.6)

w2 = 1 + k2
3 . (5.7)

Some arbitrary constants involved in the calculation of σ̄ have been set to zero and
A(θ)r−1/2 is rewritten as the amplitude given in (5.4) in order to simplify notation.
Matching with the inner solution (4.2) now requires that

Dl = D0 +

9∑
j=0

(Dj
1 + D

j
2c + D

j
3)k

1−bj δ2/3. (5.8)

Given that the above ray field describes downstream-travelling waves and that the
acoustic sources are located near the leading edge, it follows that (5.8) is valid for
positive φ only, as expressed through the step function in (5.4). In the transonic limit
there is no upstream radiation, though in the asymptotic analysis in the Mach-wave
region we have found that the receding-wave amplitudes are O(δ) when the local
Mach number is less than one.

5.2. Trailing-edge ray field Gt

The trailing-edge ray field is derived in a similar fashion. The same governing
equations apply and we assume that the outer expansion of the trailing-edge inner
solution displays the same phase. There is an added complication, however, in that
the streamline coordinates are discontinuous across the wake sheet of the airfoil;
due to the steady circulation, the mean-flow disturbance potential φ′ has different
values above and below the airfoil. The location of the trailing edge in (φ, ψ)-space
is (φ±TE,±0), where φ±TE = 2 + φ̄′ ± Γ/2. The mean-flow constant φ̄′ is defined as the
average of the disturbance potentials above and below the trailing edge,

φ̄′ = 1
2

[
φ′(2, 0+) + φ′(2, 0−)

]
, (5.9)

and Γ is the mean-flow circulation around the airfoil normalized by U∞b. Both
φ̄′ and Γ are calculated using the steady TSD code described in § 2. Trailing-edge
coordinates (φt, ψ) are defined according to φt = φ − φ±TE for ψ > 0 and ψ < 0
respectively, and the pair (rt, θt) defines the corresponding polar coordinates. Behind
the airfoil, this trailing-edge coordinate system maps continuously to physical space.
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The trailing-edge ray field can now be written as

Gt =
Dt(θt)H(φt)

k2φ
1/2
t

eik[V1(θt)φt+V2(θt)φ
′
t(φt,ψ̃)]. (5.10)

The potential φ′ in the phase distortion of the leading-edge ray field (5.4) is replaced
by φ′t for the trailing-edge field (5.10). This is the mean-flow perturbation potential
with the arbitrary constant defined such that the potential disappears at the trailing
edge, so that

φ′t(φt, ψ̃) = φ′(2 + φt, ψ̃)− φ̄′ ∓ Γ

2
. (5.11)

The ray field (5.10) closely resembles the leading-edge ray field (5.4), though it is
expressed in trailing-edge coordinates, has a different directivity function Dt(θt) (to
be determined by matching) and, as will be shown in § 6, is a factor O(k−1/2) smaller.

5.3. Volume-source solution Gp

For an airfoil in subsonic flow, Myers & Kerschen (1995) show that the distribution
of volume sources is concentrated near the leading edge where the singularity is
responsible for large mean flow gradients, while the sources elsewhere are too small
to significantly contribute to the sound generation. However, because in our transonic
problem the steady TSD leading-edge singularity is ‘stretched’ in the transverse
direction, the leading-edge analysis assumes a mean-flow singularity that is uniform
in Ψ , without decay in the transverse direction (see (2.7)). Although asymptotically
correct in region A, the inner solution Hj

2 incorrectly predicts plane waves everywhere
downstream of the Ψ -axis and a reflection of those waves along the semi-infinite
line Φ > 0. Consequently, the outer expansion of this leading-edge solution exhibits
singular behaviour (at θ = θg , see (4.21)) that must be resolved by considering the
transverse decay of the leading-edge singularity and the finite extent of the airfoil. To
this end we examine the particular solution of (3.5) in the outer region.

We first determine the volume-source solution neglecting distortion by the mean
flow and interaction with the airfoil, given by the particular solution of

∂2G

∂ψ2
+ 2ik

∂G

∂φ
+ k2(1− k2

3)G = 2A∗t
∂

∂φ
{q(φ, ψ̃)eikχ(φ,ψ)} (5.12)

which disappears when φ→ −∞. By Fourier transforming in ψ, solving the resulting
ordinary differential equation in φ with the upstream boundary condition and applying
the inverse Fourier transform, the solution

Gp = − A∗t eπi/4

(2πk)1/2
=

∫ φ

−∞

∫ ∞
−∞

(∂/∂ξ){q(ξ, η̃)eikχ(ξ,η)}
(φ− ξ)1/2

eikσ̄p(φ,ψ;ξ,η) dη dξ (5.13)

is obtained. Here, the double bar across the outer integral denotes finite-part integra-
tion, σ̄p = (1 − k2

3)(φ − ξ)/2 + (ψ − η)2/2(φ − ξ) + O(δ2/3) and η̃ = δ1/3η, analogous
to the definition of the coordinate ψ̃. Under the integral signs, we recognise the same
leading-order phase terms as those of the ray fields of the previous section (e.g. (5.3)),
with φ and ψ here replaced by φ − ξ and ψ − η respectively. The same eikonal
equation (5.1) then accounts for the ray distortion as represented by the O(δ2/3) phase
terms in the solution

σ̄p = V1(θp)(φ− ξ) + V2(θp)φ
′
p(φ, ψ; ξ, η̃), (5.14)



108 I. Evers and N. Peake

where tan θp = (ψ − η)/(φ− ξ) and

φ′p = φ′(φ, ψ̃)− φ′(ξ, η̃)

× sgn (ψ)H(ψ cot θp)H(−η cot θp)H(ξ − η cot θp)∆φ
′(ξ − η cot θp). (5.15)

The function ∆φ′(φ) = φ′(φ, 0+) − φ′(φ, 0−) is the jump of the steady disturbance
potential across ψ = 0. This completes the particular solution Gp, though two
clarifying remarks are in order.

First, since the thin-airfoil representation of the mean flow predicts a |φ|−1/3

singularity in q (confirmed by differentiating (2.7) with respect to x), the outer integral
in (5.13) diverges, and must therefore be taken in the Hadamard or finite-part sense
as denoted by the double bar. This finite part is obtained by taking the derivative
with respect to ξ outside the integral after some rearranging, or alternatively by
a suitable integration by parts coupled with the assumption that q is continuous
everywhere, specifically across φ = 0. This latter interpretation relies on the fact that
the actual flow velocity is indeed continuous near the leading edge, and that the
local TSD approximation of q merely describes the limiting behaviour of the flow. A
more rigorous analysis would recognise the continuous transition between the flows
upstream and downstream of the forming Mach wave in an asymptotic region that
discerns the stagnation point flow but that provides only an asymptotically small
contribution to the sound generation. The expression (5.13) represents the solution in
the limit that this region disappears, and its accuracy is confirmed in the leading-edge
analysis, where the local approximation of q is used and the resulting expression for
Gp can be seen to satisfy conservation of mass, momentum and energy across φ = 0.

The second remark concerns the function φ′p, which is an approximation of the

integral cos θp
∫
qdrp that appears when solving the eikonal equation. It is a measure

of the phase distortion at the point (φ, ψ) for a ray that originates at the source (ξ, η),
which must of course disappear when these two points coincide. The third term of φ′p
in (5.15) ensures the continuity of φ′p across ψ = 0, as the function φ′ is discontinuous.
The jump of φ′ across the φ-axis is therefore subtracted and the step functions ensure
that this occurs if and only if the ray crosses the axis downstream of the leading edge.
The argument of ∆φ′ in (5.15) is ξ − η cot θp, which is the φ-coordinate of the point
where the line joining (φ, ψ) and (ξ, η) crosses the axis.

Since the volume sources are not present in the far field, the limit |φ|, |ψ| � |ξ|, |η|
may be taken in (5.13) to calculate the far-field radiation. By also applying integration
by parts as discussed above, the volume-source sound in the far field is found to be

Gp ∼ Dp(θ)H(φ)

k3/2φ1/2
eik[V1(θ)φ+V2(θ)φ′], (5.16)

where the directivity function Dp is given by

Dp(θ) = k2

∫ ∞
−∞

∫ ∞
−∞
Q(θ; ξ, η)eik[(tan2 θ+w2)ξ/2+(kn−tan θ)η] dη dξ, (5.17)

and where

Q(θ; ξ, η) =
A∗t e−πi/4

2 (2π)1/2
(1− k2

3 − tan2 θ)q(ξ, η̃)

× exp {ik[g(ξ, η̃)− gl + β2
∞(w2 + tan2 θ)(4η tan θ + w2ξ − 3ξ tan2 θ)/8

−V2(θ)φ′(ξ, η̃)− V2(θ) sgn (ψ)H(−η cot θ)H(ξ − η cot θ)∆φ′(ξ − η cot θ)]}.
(5.18)
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Noting that the phase in (5.17) varies rapidly with ξ and η when tan θ 6= kn, two
further integrations by parts are applied to find the leading-order expansion in k of
the double integral, leading to

Dp ∼
∑
j odd

Dj
p(θ)k1−bj δ2/3, tan θ 6= kn, (5.19)

where the functions Dj
p(θ), given by (4.15), have also been calculated in the inner-region

analysis. This far-field result agrees with the form of the scattered-field component of
H
j
2p, though it does not include the plane-wave and hydrodynamic components given

in (4.14).
It is clear that (4.15) and thus (5.19) are not valid near tan θ = kn, in which case we

must revert to a numerical evaluation of the double integral in (5.17) using computed
values of q and φ′. (In the examples of § 7, we perform the numerical integration
when θ lies within 10◦ of the gust orientation angle θg .) For this critical observer
angle, Dp is asymptotically larger than (5.19), indicating that the sound is radiated
primarily in the direction of the gust orientation angle.

5.4. Complementary solution Gc

The velocity normal to the airfoil now consists of the velocity due to the incident
gust, as specified by the right-hand side of the boundary condition (3.8), and that
due to Gp. The latter is approximated by differentiating (5.13) under the integral
signs, by applying the method of stationary phase for the integral in η and finally by
calculating the finite part of the integral in ξ across the Mach wave. The result is

∂Gp

∂ψ

∣∣∣∣
ψ=0

=
2knA

∗
t q(φ, 0)

k2
n + w2

eik(φ+g(φ,0±)−gl )

+iknH(φ)
∑
j

(− sgn kn)
jLje

ik[V1(θg)φ−k2
nφ+V2(θg)φ

′(φ,0 sgn(−kn))]k1−bj δ2/3. (5.20)

The first term in (5.20) is due to the hydrodynamic component of Gp (this component
is small in the far field and therefore does not appear in the far-field expansion of
Gp) and the second term is due to the (nearly) plane sound wave also found in region
A. We write Gc,hyd for the part of the complementary solution that cancels the first
term in (5.20) and the velocity of the incident gust, and Gc for the part that cancels
the second term in (5.20). Neglecting for the moment the diffraction from the airfoil
edges (these are included in Gl and Gt), the former is given by

Gc,hyd =

[
An +

2knA
∗
t q(φ, 0±)

k2
n + w2

+
Anq(φ, 0±)

w2

]

×sgn (ψ)H(φ)

kw
exp

{[
−w +

q(φ, 0±)

w

]
k|ψ|+ ikφ+ ik[g(φ, ψ̃)− gl]

}
, (5.21)

valid for φ > 0 and significant in an O(1/k) thick ‘hydrodynamic boundary layer’
whose extension downstream of the trailing edge ensures that the Kutta condition
is satisfied. The accuracy of the result (5.21) is confirmed by substitution into (3.5)
and by noting that its derivatives are dominated by derivatives of the phase factors.
Clearly, no significant sound is generated along the airfoil away from the edges due
to interaction between the hydrodynamic motion and the surface. By contrast, the
plane acoustic waves generated by the volume sources are reflected, producing a
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Airfoil

Reflected field

Observer
(φ, w)

θ

ξ

η

θg

P

Figure 3. Schematic diagram of the plane-wave components of Gp. Plane waves travelling at the
gust angle (here assumed positive) are generated in the Mach-wave region all along the η-axis, and
are reflected by the airfoil. The origin and the point P define the interval on the η-axis that cannot
be seen by an observer at (φ, ψ) in the far field.

significant radiation component Gc. (Figure 3 is a schematic representation of the
planes waves, their reflection, and the corresponding shadow region, not including
the diffracted fields and phase-front distortion.) Again we approach the problem by
first determining the solution neglecting any propagation effects due to mean-flow
non-uniformities, namely we solve the homogeneous form of (5.12). The solution that
is valid in the far field then follows by perturbing the phase such that the eikonal
equation is satisfied to O(δ2/3) and the transport equation is satisfied to O(1). The
far-field expansion is calculated by taking r → ∞, and we find a radiation Gc of the
form (5.16) with a directivity factor

Dc(θ) =

9∑
j=0

iknLje
πi/4(− sgn kn)

j sgn (ψ)

(2π)1/2
k2−bj δ2/3

∫ φ±TE

0

eikχ±c (θ,ξ)dξ, (5.22)

where

χ±c (θ, ξ) = [V1(θg)− V1(θ) + tan2 θ − k2
n]ξ − β2

∞ tan2 θ(tan2 θ + w2)ξ/2

+V2(θg)φ
′(ξ, 0 sgn(−kn))− V2(θ)φ′(ξ, 0±). (5.23)

The integration is performed along the airfoil surface, and the upper and lower signs
are taken when ψ is positive and negative respectively. When tan2 θ − k2

n = O(1), an
integration by parts shows that, to leading order,

Dc(θ) =
∑
j

D
j
2c,sin(θ)k1−bj δ2/3

(
1− eikχ±TE(θ)

)
, tan2 θ 6= k2

n, (5.24)

where

χ±TE(θ) = ∂±(θ)− ∂±(|θg| sgnψ)− β2
∞k

2
n(k

2
n + w2)∓ V2(θg)H(knψ)Γ , (5.25)
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and

∂±(θ) = 2V2(θ) + [tan2 θ − V1(θ)− V2(θ)]φ±TE − β2
∞ tan2 θ(tan2 θ + w2), cos θ 6= 0.

(5.26)

The directivity factors Dj
2c,sin(θ) are given by (4.21), and ∂±(θ) is a measure of the

acoustic phase shift between the leading and trailing edges. (The analysis of Appendix
C will clarify that the expression for this shift is not valid in the Mach-wave region.)
The final factor in (5.24), which is not included in the complementary solution of
the inner region, accounts for the presence of the trailing edge. Similar to the result
for the particular solution, Dc(θ) is singular in the gust direction, though in this case
(4.21) shows that the reflection brings about an additional singularity at θ = −θg .
Again, these singularities are avoided by evaluating (5.22) numerically near these
critical angles.

6. Other inner regions
6.1. Trailing-edge and transition regions C and D

To determine the directivity function of the trailing-edge ray field (5.10), matching
must again be performed. Due to the Kutta condition at the trailing edge, the
boundary-layer-type solution (5.21) that extends from the leading edge and continues
in the outer region along the length of the airfoil can be taken to also extend past
the trailing edge along the wake sheet (Myers & Kerschen 1995). In other words, the
convected gust is not diffracted by the trailing edge, and instead the scattered field
must cancel the pressure jump across the wake introduced by the leading-edge ray
field. The resulting sound is O(k−1/2) smaller in amplitude than the leading-edge field.
Here, we do not consider the diffraction of the plane-wave component of the particular
solution Gp, as this scattering has already been included in the solution Gc (see (5.22)).

The requirement that the pressure be continuous is equivalent to the requirement
that the modified pressure p̄, defined by (3.9), is continuous. The jump in p̄ across the
wake sheet ψ = 0 due to the leading-edge ray field is, from (5.4),

p̄|0+

0− =
∆pk

−1/2

(2 + φt)
1/2

eik[V1(0)φt+V2(0)φ′t], (6.1)

where

∆p =
iw2

2
[Dl(0)e−ik∂+(0) − Dl(2π)e−ik∂−(0)], (6.2)

and the phase functions ∂±(θ) are given by (5.26). At this point it is clear that
although the potential φ′ is small, its influence on the acoustic field is significant
due to the large value of k in the expression for ∆p. In all previous expressions, the
O(δ2/3k) influence of the mean flow on the sound propagation simply resulted in an
additional phase factor that does not affect sound power levels, i.e. the amplitude
of the unsteady pressure. Due to interference between the leading- and trailing-edge
fields, however, the mean flow brings about a potentially O(1) change in the amplitude
of the trailing-edge scattered field through the constant ∆p.

We rescale the governing equation (3.5), this time with local coordinates (Φt,Ψ )
and corresponding polar form (Rt, θt), defined exactly as in (4.1) but now for the
trailing edge. The transformation

Gt = k−3/2Hte
i(1−k2

3)Φt/2 (6.3)
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then leads to the boundary-value problem

∂2Ht

∂Ψ 2
+ 2i

∂Ht

∂Φt
= 0,

iw2

2
Ht

∣∣∣∣0+

0−
− ∂Ht

∂Φt

∣∣∣∣0+

0−
= − ∆p

21/2
, Φt > 0, (6.4)

∂Ht

∂Ψ

∣∣∣∣0+

0−
= 0, Φt > 0, (6.5)

∂Ht

∂Ψ
= 0, Φt < 0. (6.6)

The boundary condition (6.4) specifies the pressure jump in the scattered field required
to cancel the pressure jump (6.1) in the leading-edge ray field, (6.5) specifies the
continuity of the normal velocity across the wake sheet, and the final condition
specifies a zero normal velocity along the airfoil. This problem can be solved exactly
using Fourier transforms and the Wiener–Hopf technique (cf., the exact solution for
H0, equation (4.8)), giving

Ht(Φt,Ψ ) = − i∆p sgn (Ψ )H(Φt)e
iw2Φt/2

23/2w2

{
e−w|Ψ | erfc

[
e−πi/4(|Ψ | − iwΦt)

(2Φt)
1/2

]

+ ew|Ψ | erfc

[
e−πi/4(|Ψ |+ iwΦt)

(2Φt)
1/2

]
− 2e−iw2Φt/2 erfc

(
e−πi/4|Ψ |
(2Φt)

1/2

)}
, (6.7)

and leading to the uniformly-valid outer expansion of the inner solution

Ht ∼ Dt(θ)H(φt)e
ikψ2/2φ

(kφt)
1/2

+
i∆p sgn (ψ)

21/2w2
erfc

(
e−πi/4k1/2|ψ|

(2φt)
1/2

)
, (6.8)

where

Dt(θt) =
∆pe

−πi/4 tan θt

π1/2w2(tan2 θt + w2)
. (6.9)

The first term in (6.8) corresponds to the trailing-edge ray field, and matches with
(5.10) in the outer region. However, the second term in (6.8) does not match with
(5.10) when ψ = O(k−1/2), and an inner region similar to the transition region of
Myers & Kerschen (1995) must be included along the wake sheet (labelled region D
in figure 1). This solution accounts for the interaction between rays that pass above
the airfoil and those that pass below the airfoil, which experience different distortions
according to the difference in the mean-flow properties above and below the airfoil.
We treat this region with another set of inner variables, in this case (φt, η) with
η = k1/2ψ, and look for a solution of the form

Gw = k−3/2Hweik[V1(0)φt+V2(0)φ′t(φt,0)]. (6.10)

Here, the boundary-value problem reads

∂2Hw

∂η2
+ 2i

∂Hw

∂φt
= 0,

Hw|0+

0− =
2i∆p

w2 (2 + φt)
1/2
, φt > 0,
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∂Hw

∂η

∣∣∣∣0+

0−
= 0, φt > 0,

∂Hw

∂η
= 0, φt < 0,

and after some considerable calculations the transition solution is found to be

Gw(φt, η) =
i∆p sgn (η)H(φt)

w2k3/2 (φt + 2)1/2
eiη2/2(φt+2)

× erfc

(
e−πi/4|η|

(φt(φt + 2))1/2

)
eik[V1(0)φt+V2(0)φ′t(φt,0)]. (6.11)

This solution is identical in functional form to the leading-order transition solution
for the subsonic problem (Myers & Kerschen 1995) apart from the phase factors. The
corresponding far-field geometric-acoustics solution is now taken to be of the form
(5.10), with Dt replaced by

Dw(θt) =
i∆pk

1/2 sgn (ψ)

w2
e−ik tan2 θt erfc (e−πi/4k1/2| tan θt|). (6.12)

This result agrees with the large-φ expansion of Gw , it matches with the second term
in (6.8), it satisfies the eikonal and transport equations in the outer region, and it is
uniformly valid in θ.

6.2. Neglect of region E and shock-wave scattering

The results in § 6.1 describe the sound generation near the leading and trailing edges
and in the wake transition region D, but calculations involving transition region E on
the airfoil surface and for any shock waves have thus far been excluded. We briefly
examine these two aspects of the unsteady flow in turn.

First, due to the curvature of the airfoil surface, we might expect creeping waves
or whispering-gallery-type solutions to propagate along the airfoil surface, similar
to the leading-edge transition solution derived in Myers & Kerschen (1997) for a
subsonic, cambered airfoil. The existence of the leading-edge diffracted field ensures
that the normal-velocity boundary condition is satisfied in region A, yet this does
not imply that its geometric-acoustics representation satisfies the correct boundary
condition in the outer region. Taking into account the hydrodynamic boundary-layer
solution (5.21) that exists in tandem with the diffracted field and cancels the gust
upwash, we require that any additional transition solution cancels the normal velocity
on the airfoil surface induced by the leading-edge ray field. This normal velocity is
given by the ψ-derivative of (5.4), which is found to be O(k−1/2δ). Comparison with
the calculations in Myers & Kerschen (1997) in the leading-edge transition region
reveals that the unsteady potential is then O(k−1δ) at shallow observer angles θ, and
smaller for other polar angles. This is a factor O(k1/2δ) smaller than the leading-order
radiation components, and is therefore negligible compared to the terms retained in
the amplitude.

Next, we consider the influence of shock waves on sound generation and propaga-
tion, as described in Evers (1999). Previous studies of gust–shock interaction, including
Ribner (1953) and Hardy & Atassi (1997), use the Rankine–Hugoniot jump relations
to demonstrate that the shock acts to scatter the gust and generate either attenuated
or propagating sound waves depending on the mean-flow and gust characteristics. For
a normal shock of infinite length with a plane shear wave incident from upstream and
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with uniform flow on either side of the shock, the results in Ribner (1953) show that in
the transonic limit plane sound waves of amplitude O(δ2/3k−1) propagate downstream
of the shock. Although the shock waves in the present study are finite in length and the
mean flow is not uniform, Ribner’s (1953) analysis can still be applied locally, thanks
to the short gust wavelength. Further, in TSD flow shocks are O(δ−1/3) in length, vary
in strength on that same scale, and form an angle with the vertical that is O(δ1/3), so
that local application of the normal-shock results is certainly justified. Downstream
of the shock wave, therefore, the acoustic field (unsteady potential Gs) induced by the
gust–shock interaction is governed by the differential equation (3.5) and the boundary
condition that is defined by requiring that Gs describes plane waves of appropriate
strength at the shock. Naturally, the radiation condition and reflection of waves by the
airfoil surface must also be considered in deriving Gs as an integral along the shock
length. However, there is no need to perform these calculations here, as it is already
clear that the far-field expansion of Gs would lead to a cylindrically decaying sound
field with an extra factor k−1/2 in the amplitude of the stationary-phase approximation
of the integral. This would render Gs an O(k−1/3) smaller than the mean-flow effects
considered at the leading edge, and it therefore follows that Gs can be neglected.

The sound generation at the shock is similar to the mechanism at the Mach wave
extending from the leading edge. Recall that the unsteady flow induced by the gust–
Mach wave interaction resembles plane waves at small distances from the leading
edge (see (5.20)), yet exhibits the appropriate decay when observed many wavelengths
from the source (see (5.16)). Bearing in mind that Gp is asymptotically smaller than its
derivatives, (5.20) and (5.16) show that the factor k−1/2 separates the order magnitudes
of the plane-wave and far-field representations. The significant difference between the
mechanisms at the shock and at the Mach wave, however, is that the former is
characterized by an O(δ2/3) discontinuity in the mean flow while the latter is driven
by a larger O(δ2/3k1/3) discontinuity on the wavelength scale due to the leading-edge
singularity.

In addition to the incident gust, the acoustic waves generated at the leading edge
interact with the shock wave to generate sound. By the same argument as advanced for
the gust–shock interaction, the amplitude of this sound is also asymptotically smaller
than the components already considered. However, whereas we are not concerned
with how the incident gust is scattered by the shock, some attention must be paid to
the refraction of the sound waves. We consider the leading-edge ray field (5.4) and
ask whether or not the same expressions are valid downstream of the shock wave. A
necessary condition for the unsteady flow to satisfy the shock jump relations is that
the phase terms of the upstream and downstream flows are equal across the shock.
The same requirement is used by Ribner (1953) and others. Since the mean-flow
potential and streamfunction φ and ψ are continuous across the shock, and the shock
in physical space consequently maps to a single curve in (φ, ψ)-space, the exponent
in (5.4) must also be continuous across the shock. Therefore, the phase terms of the
upstream and downstream flows agree, the same governing equation (3.5) is satisfied,
the jump conditions are satisfied to leading order and we therefore conclude that the
expressions are valid on both sides of the shock.

7. Results and discussion
7.1. Total far-field solution

The total sound radiated to the far field is written as a sum of ray fields which have
been expressed in terms of leading- and trailing-edge coordinates. The scattered field
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extending from the trailing edge is now rewritten in terms of the coordinates φ and
ψ (as opposed to the trailing-edge coordinates φt and ψ), leading to the additional
phase shift k∂±(θ) (given by (5.26)). The total far-field radiation is thus given by

Gtot ∼ D(θ)H(φ)

k3/2φ1/2
eik[V1(θ)φ+V2(θ)φ′(φ,ψ̃)], (7.1)

where

D(θ) = Dp(θ) + Dc(θ) + Dl(θ) + [Dt(θ) + Dw(θ)]
eik∂±(θ)

k1/2
. (7.2)

The function D(θ) is the directivity factor of the total geometric-acoustics field, which
consists of the following terms. The directivity Dp represents the volume sources near
the leading edge, it is dominated by the jump in the anti-symmetric component of
the mean flow across the airfoil, and it has a maximum near the gust angle. The
deformed plane waves generated by the volume sources are reflected by the airfoil and
scattered by the leading and trailing edges, leading to the complementary solution
Dc. Scattering of the (distorted) gust and of the hydrodynamic component of the
volume-source solution is determined in the leading-edge analysis and is given by

Dl = D0 +

9∑
j=0

(Dj
1 + D

j
2c + D

j
3)k

1−bj δ2/3, (7.3)

using the expressions (4.9), (4.10), (4.20) and (4.28). The directivity D0 is the result
for a semi-infinite flat plate at zero incidence, while the summation in Dl corresponds
to the 10 largest components of the mean-flow distortion brought about by airfoil
thickness, camber and angle of attack. The gust distortion by the mean flow leads to
the contributions Dj

1, the effects of the volume sources not including those already

represented by Dp and Dc are given by Dj
2c, and D

j
3 are due to the distortion of the

flat-plate radiation. A uniform perturbation to the mean-flow speed does not lead
directly to the generation of sound, so there is no contribution from H4 (see § 4.5). The
leading-edge ray field is rescattered by the trailing edge such that the unsteady Kutta
condition is satisfied, resulting in the directivity Dt of (6.9). Not only at the trailing
edge, but also further downstream along the wake, the pressure must be continuous
and this is realized by the transition solution, and the corresponding directivity Dw is
given by (6.12).

For a parametric study of the radiation, (7.1) must be expressed in the physical
coordinates (x, y). Using the far-field approximation (2.6) of the mean-flow TSD
solution, φ is related to x and ỹ = δ1/3y by

φ = x− Γ

2π
tan−1

(
K1/2ỹ

x

)
+
Γ + gl

2
+ O

(
log r̃

r̃

)
, (7.4)

while the polar angle θ in (φ, ψ)-space is also the polar angle tan−1(y/x) in physical
space. The circulation Γ = φ′(2, 0+)− φ′(2, 0−), the average trailing-edge disturbance
potential φ̄′ = [φ′(2, 0+) +φ′(2, 0+)]/2, the leading-edge drift gl , and the parameter η1

of the leading-edge singularity (see (A 3)) are calculated from the steady TSD code.

7.2. Numerical results

The incident gust is described by eight parameters (At, An, A3, k, kn, k3, B and M∞),
too many for a complete parametric study, so we restrict numerical examples to
those excluding entropy gusts (B = 0) and gusts with a spanwise velocity component
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Figure 4. (a) Directivity |D(θ)| for a flat plate with finite chord (solid line) and semi-infinite chord
(dashed line) at zero incidence with k = 5, θg = 45◦, k3 = 0 and M∞ = 1. (b) The same flat plate
and gust, but with k = 20. The mean flow is incident from the left.

(A3 = 0). Two further parameters are fixed by the requirements that the gust is
solenoidal and has an amplitude of 1 (since the gust amplitude ε has already been
factored out of the equations), giving the constraints

At + Ankn + A3k3 = 0, and A2
t + A2

n + A2
3 = 1. (7.5)

This leaves the four independent parameters k, kn, k3 and M∞, and we use the gust
orientation angle θg = arctan kn instead of kn.

Figure 4 shows the directivity pattern given by |D(θ)| for a flat plate at zero angle
of attack in a stream with M∞ = 1 and for a gust defined by k3 = 0 and θg = 45◦. In
graph 4(a) the reduced frequency is k = 5, while 4(b) shows the case k = 20, and in
both cases the dashed line represents the leading-edge radiation, neglecting trailing-
edge rescattering. The rapid oscillations in the total field are due to interference
between the leading- and trailing-edge ray fields. The reduced frequency, k, influences
the interference patterns through the factor k−1/2 exp(ik∂±(θ)) multiplying the trailing-
edge field. The patterns are dominated by two lobes which contract towards the x-axis
for increasing k, and these lobes result from a cancellation of the leading-edge field
by the trailing-edge field at shallow observer angles.

When the airfoil is taken to have non-zero thickness and mean loading, the resulting
steady distortion influences the far-field intensity through the directivities Dp and Dc
(representing the effects of volume sources and reflection by the airfoil surface),
through the directivities Dj

1, D
j
2c and D

j
3 (recall that the part of D2 corresponding to

the source term in (3.5) has been included in Dp) and through an additional phase
shift between the leading-edge and trailing-edge ray fields. In figures 5 and 6 we look
at the components that make up the total acoustic field for a NACA 0004 profile
(4% thickness) at 1◦ angle of attack in a flow of M∞ = 0.9 and for a gust of reduced
frequency k = 5, with θg = 30◦ and k3 = 0. The directivity of the total field is shown
by the solid line in figure 5(a) and is compared with the leading-order solution |D0|
(for the semi-infinite flat-plate). The most striking features are the lobes found at the
angles θ = ±θg , similar to those of the previous figure, though with fewer oscillations
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Figure 5. (a) The total directivity |D(θ)| (solid line) and the leading-order directivity |D0(θ)| (dashes)
for a NACA 0004 profile with 1◦ angle of attack at M∞ = 0.9. Gust parameters are k = 5, θg = 30◦
and k3 = 0. (b) Directivity of the leading-edge ray field |Dl(θ)| for the same airfoil and gust (solid
line) and again the leading-order contribution (dashes).
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Figure 6. (a) The directivity |Dp(θ)| of the volume-source field (solid line), the directivity |Dc(θ)|
of its reflection (dashes) compared with the leading-order directivity |D0(θ)| (dashes and dots), all
for the airfoil and gust of figure 5. (b) Directivity |Dp(θ) + Dc(θ)| of the volume sources and the
corresponding reflection.

because the Mach number is smaller. The lobes are accentuated by the direct and
reflected volume-source fields. The leading-edge diffracted field, |Dl |, is represented
by the solid line of figure 5(b). We note the discontinuity across the wake, due to a
difference between the distortion of the leading-edge field above and below the airfoil,
and the singular behaviour at steep observer angles, due to the integrable singularity
(cos θ)2bj−2 of Dj

3(θ). In figure 6(a), the volume-source solution and its reflection are
represented through the plots of |Dp| and |Dc|, and a comparison is made with the
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Figure 7. (a) Directivity pattern for the airfoil and gust of figures 5 and 6, but with θg = −30◦
(solid line) and for a flat plate with finite chord at zero incidence with the same gust (dashes). (b)
Same, but with θg = 30◦ and an angle of attack of 2◦.
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Figure 8. (a) Directivity patterns for a NACA 0008 section (solid line) and a flat plate with finite
chord (dashes), both at zero angle of attack, with k = 10, θg = −30◦, k3 = 1 and M∞ = 0.9. (b)
Same but with θg = 0◦ and k3 = 0.

same leading-order directivity, |D0|, as in figure 5. The field from the volume sources
and the complementary solution combined, |Dp +Dc|, is shown in figure 6(b). Due to
reflection by the airfoil, this field is slightly stronger below the airfoil than above.

In figure 7(a) the gust angle is taken to be θg = −30◦ and we see that the lobe in
the lower half-plane is even more pronounced. For both positive and negative gust
angles, the lower lobe is larger, indicating that a positive angle of attack increases
the radiation in the lower half-plane. The gust angle is 30◦ in figure 7(b), but now
the angle of attack is increased to 2◦. In both graphs, the total directivity (solid line)
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is compared with the directivity for the corresponding flat-plate result (dashes). Even
for this very moderate thickness and angle of attack, the influence of the non-uniform
mean flow is significant.

We next consider the influence of airfoil thickness on the far-field radiation pattern.
Here we take a NACA 0008 airfoil with zero angle of attack and an incident gust
with k = 10, θg = −30◦ and k3 = 1 in figure 8(a), and with k = 10, θg = 0◦ and
k3 = 0 in figure 8(b). Again, the dashed lines represent the equivalent cases without
mean-flow distortion (i.e. a flat plate at zero angle of attack). In the first of the two
figures, we find the maximum directivity near the gust angle, whereas the second is
symmetric about ψ = 0. The comparison with the dashed lines shows that an increase
of thickness to 8% of the chord length leads to a considerable increase in radiation
when θg = −30◦, especially in the lower half-plane. By contrast, for the symmetric
case θg = 0, the increased airfoil thickness leads to a decrease in radiation in both
half-planes.

7.3. Acoustic power

An alternative measure of noise levels in the far field is given by the acoustic intensity
see (Goldstein 1976)

I =

(
p′

ρ0

+ ∇G′ · u0

)
(ρ0∇G′ + ρ′u0). (7.6)

The energy flux across a circle (at large r) is given by I · r̂, where r̂ is the unit vector in
the radial direction. The time-average of this flux is integrated over −π/2 < θ < π/2
and divided by ε2ρ∞U3∞b/2 to formally obtain the normalized radiated sound power
as

P =

∫ π/2

−π/2
|D(θ)|2
k cos2 θ

dθ. (7.7)

However, the transonic approximation derived from the parabolic convected wave
equation becomes invalid when tan θ = O(δ−1/3), as confirmed by analysis in the
Mach-wave region, where the subsonic phase of (4.33) replaces the singular transonic
phase of (5.4). Consequently, the acoustic intensity is unbounded when cos θ → 0, and
the integral (7.7) does not converge. In order to integrate the intensity over the steep
observer angles for which the transonic solution is no longer valid, an expression for
the eikonal that is uniformly valid in θ is derived in Appendix C.

The normalized acoustic power P , given by the uniformly-valid expression (C 2),
is first plotted against the reduced frequency k for NACA 4-digit sections with
thicknesses ranging from 0 to 12% of the chord length (figure 9). The radiated power
increases with increased thickness, and except for the airfoil with 12% thickness, the
radiated power decreases with increasing k. The increase in power with increasing
thickness is also evident in figure 10, though here interaction between the leading-
and trailing-edge fields leads to a more erratic response to, in this case, changes in
the spanwise wavenumber k3. At k3 = 0 we note that only a few decibels separate the
power levels for the various airfoils, but for k3 = 5 the graphs diverge considerably;
even for a moderate airfoil thickness of 4%, the radiated power differs by more
than 30 dB from the flat-plate result. This is explained by the fact that the flat-plate
solution decays like 1/w2 for large w2 = 1 + k2

3, whereas the additional terms due to
mean-flow distortion show weaker or no decay with increasing w2. It is interesting
to note that although in subsonic flow there is a maximum value of k3 above which
there is no radiation (specifically, there is no radiation from an airfoil in subsonic
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Figure 9. Total power in decibels (normalized with respect to the power for t = 0%, k = 5) for
NACA 00XX sections at zero angle of attack for varying k. Here, k3 = 0, θg = 30◦ and M∞ = 0.9.
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Figure 10. Total power in decibels (normalized with respect to the power for t = 0%, k3 = 0) for
NACA 00XX sections at zero angle of attack for varying k3. Here, k = 5, θg = 30◦ and M∞ = 0.9.

flow when |k3| > M∞/β∞), this is not the case in transonic flow, where radiation is
produced for all k3.

Finally, we look at the effect of changing the leading-edge radius on the sound
power levels of the leading-edge ray field. The thickness of the NACA 00XX section
is varied from 0 to 20% of the chord length, the latter corresponding to a nose radius
of 4.4%. As in figures 9 and 10, figure 11 indicates an increase in intensity with
increased mean-flow distortion. For each of the gust angles considered, the power
levels increase by approximately 30 dB.

7.4. Comparison with subsonic theory

The most fundamental similarities between the current work and the subsonic prob-
lems of Myers & Kerschen (1995, 1997) and Tsai & Kerschen (1990) are the applica-
tion of Goldstein’s rapid distortion theory and the use of the asymptotic approxima-
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Figure 11. Leading-edge power (normalized with respect to the power for t = 0%, θg = 0◦) for
varying airfoil thickness. Here, k = 10, k3 = 4, M∞ = 1 and the angle of attack is zero.

tions δ � 1 and k � 1. The procedures used to solve Goldstein’s equation that follow
naturally from the asymptotics for both the subsonic and transonic cases run parallel
in many ways. For instance, the same asymptotic regions near the airfoil leading and
trailing edges and along the wake sheet are present in both problems and determine
the solution structure; ray fields propagate from the edges, the trailing-edge noise
being O(k−1/2) smaller in amplitude than the leading-edge noise, and a transition
solution that satisfies essentially the same parabolic equation in both cases extends
downstream of the trailing edge. A similar asymptotic expansion of the local solution,
corresponding to the various interactions between the gust, the mean flow and the
airfoil, exists in the leading-edge region. However, the theory does not simply describe
the M∞ → 1 limit of the subsonic problem which is in fact a singular limit, and it
is worthwhile examining the significant differences between the cases β2∞ = O(1) and
β∞ = O(δ2/3).

Clearly the TSD steady flow about the airfoil is fundamentally different from the
subsonic steady flow, and the former is not a limiting case of the latter. The mean-
flow perturbation speed accelerates when the oncoming uniform flow approaches
the speed of sound, so that φ′ = O(δ2/3), larger than the perturbation potential
for subsonic flow. Consequently, the unsteady flow generated by the transonic mean
flow–gust interaction is generally O(δ−1/3) larger than for subsonic flow. A second
difference between the transonic and subsonic steady flows is the difference between
the local approximations of the leading-edge singularity. The subsonic disturbance
speed is singular like (x2 + β2∞y2)−1/2 near the leading edge, while for transonic flow
this becomes |x|−1/3. Since sound generation occurs on the gust wavelength scale, it
follows that the noise due to the various interactions with the mean-flow singularity
in the subsonic and transonic cases are O(k1/2δ) and O(k1/3δ2/3) smaller than the
leading-order terms respectively. Although q = O(δ2/3) in steady transonic flow, the
disturbance velocity in the y-direction is O(δ), as dictated by the boundary condition
on the airfoil surface, so mean-flow quantities are functions of x alone to leading
order. The leading-edge singularity is therefore ‘stretched’ in the y-direction, indicative
of the Mach wave that forms in the transonic limit, and interaction with the gust
produces plane sound waves that do not appear in the subsonic solution.
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The differences outlined above explain why the transonic problem is not a limiting
case of the subsonic problem, though some components of the two sets of solutions
do match. For instance, the leading-edge solutions H0 +H4β

2∞ represent the β2∞ → 0
expansion of the zeroth-order solution of the subsonic inner-region problem (cor-
responding to a semi-infinite flat plate at zero incidence). However, this cannot be
said of the respective outer expansions nor of the corresponding directivity factors.
This stems from the fact that the subsonic problem involves the Prandtl–Glauert
coordinates φ and β∞ψ, and outer expansions are taken in the limit φ2 + β2∞ψ2 → ∞
as opposed to φ2 + ψ2 → ∞. Indeed the whole subsonic solution procedure be-
comes meaningless in the transonic limit because it relies on the Prandtl–Glauert
transformation.

The transonic flow described here permits three kinds of discontinuities, the most
obvious being shock waves in the mean flow. In addition, the leading-edge singularity
stretches below and above the airfoil in the TSD approximation and causes a jump
in the disturbance speed q on the wavelength scale, even though a smooth transition
that includes the stagnation point exists in the full potential flow. The linearized
description is invalid in a region of size O(δ2), but this length scale is smaller than the
gust wavelength and consequently the unsteady flow experiences the discontinuity only
and is unaffected by the transition. Third, the unsteady flow exhibits discontinuous
behaviour across φ = 0 in the transonic limit. The jumps in unsteady velocity that
result from the parabolic approximation of the mixed-type differential equation are
smoothed by local elliptic (or hyperbolic) Mach-wave solutions.

8. Summary and conclusion
The separation of the unsteady parts of the flow from the non-uniform steady base

flow and the application of asymptotic techniques involving the parameters k and δ,
with the preferred scaling kδ2/3 = O(1), are fundamental to the approach used here to
describe high-frequency gust–airfoil interactions. In addition to allowing identification
of the relevant physical mechanisms, this approach reduces the problem to smaller
manageable ones and lends itself to a blend of different solution techniques, resulting
in the combination of a numerical solution of the TSD steady flow and analytical
methods for the sound field. We have shown how the different physical processes that
determine the sound generation of the airfoil–gust combination are concentrated in
a number of asymptotic regions in the flow domain, and how a transonic geometric-
acoustics formulation describes acoustic propagation to the far field. The resulting
analysis has established the significant components of the radiation field, which are
summarized in table 1 along with the orders of magnitude of the corresponding
unsteady potentials.

The numerical results of the previous section demonstrate the characteristics of
transonic gust–airfoil interaction. The significant features are:

(i) For lifting airfoils, the directivity patterns are characterized by peaks at the gust
orientation angle and its reflection. This radiation results from the abrupt change
in the strength of the volume sources across the airfoil, which is associated with
the steady lift on the airfoil, and therefore does not appear when there is no mean
loading.

(ii) The directivity patterns are also characterized by significant interference between
the leading- and trailing-edge fields. At leading order, the two fields cancel at the
observer angle θ = 0, directly behind the airfoil, resulting in two main lobes on each
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Radiation component Potential Order of magnitude

Leading-edge diffraction of gust Gl k−3/2

Trailing-edge rescatter Gt k−2

Region D across wake Gw k−2

Mean-flow effects at leading edge Gl δ2/3k−1/2−bj
Volume sources in outer region Gp δ2/3k−1/2−bj
Reflection of Gp by airfoil Gc δ2/3k−1/2−bj

Table 1. Order of magnitudes of the unsteady potential of the radiated components in the outer
region. The 10 constants bj lie in the range 2/3 6 bj < 1 (see table 2).

side of the airfoil and a series of smaller lobes, the number of which increases with k,
at steeper angles.

(iii) As had already been concluded from the analysis, the upstream radiation is
negligible and the phase terms of all radiation components are large near the angles
θ = ±π/2.

(iv) Mean-flow distortion due to blade geometry and angle of attack may lead to
an increase or decrease in radiated energy. When k = O(δ−2/3), the interference effects
cause O(1) changes in the total directivity factor.

(v) For increases in the spanwise wavenumber k3, the radiation predicted by the
flat-plate solution decays faster than additional components attributed to the non-
uniform mean flow. Consequently, mean-flow effects account for a greater proportion
of the radiation and are increasingly significant for increasing k3 (note that in the
transonic regime, unlike in subsonic flow, there is no cut-off value for k3 above which
the airfoil does not radiate). This is a particularly important result if one were to
consider airfoil interaction with highly three-dimensional vorticity.

The work presented here can be extended to describe transonic gust–cascade
interaction, a crucial further step in the modelling of turbomachinery noise. Having
determined the two expressions for the leading- and trailing-edge ray fields for a single
airfoil, infinite rows of such fields will account for the acoustic response by a cascade,
though the separate issue of reflections and rescattering by adjacent blades must also
be taken into account (see Peake & Kerschen 1997 for the subsonic cascade).

I. E. gratefully acknowledges the financial support provided by the Engineering
and Physical Sciences Research Council (EPSRC) and by the European Commission
under the Training and Mobility of Researchers (TMR) programme.

Appendix A. Transonic leading-edge singularity
Keyfitz, Melnik & Grossman (1978) show that the perturbation potential φ′ for

TSD flow near a parabolic leading edge can be approximated by a fractional power
series in x, and the coefficient and exponent of its leading-order term (and those of
higher-order thickness terms) are given numerically. More recently, Rusak (1993) has
determined analytically the first two terms including the influence of lift, though the
exponents of higher-order terms are only fractionally greater leaving a relatively large
approximation error for fixed x. For asymptotic consistency in the unsteady analysis
we require the first ten terms.

Our approach is based upon a series solution of the Tricomi equation
ωỹνν − ỹωω = 0, obtained from the TSD equation (2.2) by transforming to the
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hodograph variables

ω = (γ + 1)
∂ϕ′

∂x
−K and ν = (γ + 1)

∂ϕ′

∂ỹ
. (A 1)

Near the leading edge both ω and ν become large and it is convenient to convert to
modified polar coordinates ρ and α (or ρ and z) given by

ρ2 = ν2 − 4
9
ω3 and z = sin α =

ν

ρ
. (A 2)

(For subsonic flow around a parabolic leading edge ω is negative, ρ = O(|x|−1/2) is
positive and z = O(1).) The method of separation of variables leads to two families
of solutions of the Tricomi equation, one symmetric and the other anti-symmetric in
z (see Cole & Cook 1986). Using these solutions, ỹ can be expressed as a fractional
power series in ρ:

ỹ =

∞∑
j=0

ρ−κj
{
ηjF

(
1
2
κj,

1
6
− 1

2
κj;

1
2
; z2
)

+ µjzF
(

1
2

+ 1
2
κj,

2
3
− 1

2
κj;

3
2
; z2
)}
, (A 3)

where ηj , µj and κj are constants and κj increase with j. Given the solution (A 3), a
similar series

x =

∞∑
j=0

ρ1/3−κj {η′jF ( 1
2
κj − 1

6
,− 1

2
κj;

1
2
; z2
)

+ µ′jzF
(

1
3

+ 1
2
κj,

1
2
− 1

2
κj;

3
2
; z2
)}

(A 4)

then expresses the coordinate x in terms of the variables ρ and z. The constants µ′j
and η′j are related to µj and ηj by

µ′j =
(

3
2

)1/3
κjηj and η′j =

(
3
2

)1/3 ( 1
3
− κj)−1

µj. (A 5)

Finally, the boundary condition (2.3) gives the relation

ν̄ = ±(γ + 1)

(
R

2x

)1/2

+ (γ + 1)s± + o(1), x ↓ 0 (A 6)

for ν = ν̄ on the airfoil surfaces. On the airfoil ρ is also written as a function of x,
ρ = ρ̄(x) say, and by substituting this function and z = ν̄/ρ̄ into (A 3) and (A 4) with
ỹ = 0, four relations are obtained, two for each surface. These relations are used to
determine the unknowns κj , µj , ηj and the coefficients and exponents that define ρ̄ on
each of the two surfaces. Subsequently, ω and thus ϕ can be determined downstream
and upstream of the leading edge. It is not feasible to perform these calculations by
hand at higher order, and therefore computer algebra is applied. We note here that
the solutions are alternately even and odd, the first one at j = 0 being even, and the
exponents in (2.7) are bj = jκ1/2 + (4− 7j)/6, where κ1 ≈ 2.4073. The coefficients c±j
of this series are given by

c±j = η
j
1λ
−jκ1+(j+2)/3(γ + 1)−1C±j , λ = (γ + 1)(R/2)1/2, (A 7)

where C±j are listed in table 2. The constant η1 cannot be evaluated analytically, as
it depends on the circulation around the airfoil which cannot be calculated from a
leading-edge analysis, but can formally be determined by matching with the outer
flow. Here, the combination η1λ

−κ1+1/3 is approximated numerically using the TSD
code described in § 2.
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j C+
j C−j bj

0 −0.600770 2.14782 0.666667
1 −0.893241 0 0.703648
2 0.105101 0.0677791 0.740629
3 −0.208041 0 0.777611
4 0.0413351 0.0400795 0.814592
5 −0.0840239 0 0.851573
6 0.0129519 0.0263838 0.888554
7 −0.0348009 0 0.925536
8 −0.00142637 0.0172927 0.962517
9 −0.0106270 0 0.999498

Table 2. Constants defining the series approximation (2.7) of φ′.

Appendix B. Mach-wave region
A matching is performed between the solutions in the leading-edge region A and

Mach-wave region B (see figure 1) in order to verify the |Φ|bj−1 singularity of Hj
2p for

Φ→ 0, and to determine the eigensolution Hj
3e that cancels the Rbj−3/2 singularity of

H
j
3p in the limit R ↓ 0.
The solutions in the leading-edge region A demonstrate that the asymptotics break

down in the small-Φ limit when the phase of the scattered field becomes unbounded.
Since the solutions Hj

1,2,3 at the different orders k1−bj δ2/3 for varying j are independent,
we may examine each solution in turn and temporarily set the mean-flow coefficients
cl to zero for all l 6= j for any one of 0 6 j 6 9. The Gφφ term in (3.5) is then of the
same order of magnitude as Gψψ and Gφ when φ and ψ scale according to

φ =
ε

k
ξ, ψ =

ε1/2

k
η, ε = k(1−bj )/(2−bj )δ2/(6−3bj ). (B 1)

This scaling defines the Mach-wave region for each component of the leading-edge
field, and the governing equation with O(1) independent variables ξ and η is

∂2G
∂η2

+ 2i
∂G
∂ξ
− bjc±j (γ + 1)(sgn η)j

×
[
|ξ|bj−1 sgn (ξ)

∂2G
∂ξ2

+ (bj − 1)|ξ|bj−2 ∂G
∂ξ

]
+(1− k2

3)Gε+ bjc
±
j (sgn ξ)(sgn η)jε

[
−2|ξ|bj−1 ∂

2G
∂η2

+ i(γ − 1)(bj − 1) sgn (ξ)|ξ|bj−2G+ 2i(γ − 1)|ξ|bj−1 ∂G
∂ξ

]
= 2A∗t bj(bj − 1)c±j (sgn η)j |ξ|bj−2εk−1 + O(Gε2, ε3/2k−1), (B 2)

where we use G to denote the unsteady potential in the Mach-wave region. The
boundary condition on the positive ξ-axis is

∂G
∂η

= −ε
1/2

k
An + O(ε3/2k−1). (B 3)

A particular solution Gp that satisfies the homogeneous form of the above boundary



126 I. Evers and N. Peake

condition is found by writing Gp as a function of ξ alone and by integrating (B 2) at
leading order exactly:

Gp =
2εA∗t sgn (ξ)

(γ + 1)(2− bj)k exp

{
−πi sgn (λ)

2(2− bj)
}
|λ|−1/(2−bj )Γ

(
1

2− bj , iλ|ξ|
2−bj
)

eiλ|ξ|2−bj ,

(B 4)

with

λ =
2(sgn η)j

(γ + 1)c±j bj(2− bj)
. (B 5)

The large-|ξ| expansion of Gp is −ibjc
±
j A
∗
t (sgn ξ)(sgn η)j |ξ|bj−1εk−1, and this confirms

the singular behaviour of H2p in region A when the Mach-wave region is approached.
The result (B 4) demonstrates how the elliptic equation (B 2) can accommodate
the continuous transition between the upstream and downstream flows, whereas its
transonic approximation predicts a discontinuity. The matching is consistent, and the
transonic solution is valid away from the Mach wave.

Next we determine the eigensolution G
j
3e = H

j
3ee

ik(1−k2
3)Φ/2/k, and to that end we

consider the solution of the homogeneous version of (B 2) that satisfies the boundary
condition (B 3). This nonlinear problem cannot be solved exactly, but we can determine
the outer expansion of G required for matching with G. The variable G without any
subscript or superscript j is assigned to this solution in the remainder of the Appendix.
We use Van Dyke’s asymptotic matching principle that G(m,n) = G(n,m), namely that the
(n+ 1)-term outer expansion of the mth-order approximation of the inner solution G
is equal to the (m + 1)-term inner expansion of the nth-order approximation of the
outer solution G. Already we know from (4.8), (4.23) and the scaling (B 1) that for
ξ > 0,

G(0,0) =
(εξ)1/2An sgn (η)

k

[(
2

π

)1/2

eπi/4eiζ2/2 − |ζ| erfc

(
e−πi/4|ζ|

21/2

)]
,

G(0,1) = G(0,0) +
(εξ)3/2An sgn (η)

k

[
e−πi/4

3(2π)1/2

(
w2 + iw2ζ2 − 6

)
eiζ2/2

−
(
w2|ζ|3

6
+ i|ζ|

)
erfc

(
e−πi/4|ζ|

21/2

)]
,

G(1,0) = G(0,0) + G
(0)
3e − ε1/2(sgn η)j+1Ej

k

(
1 +

iζ2

1− 2bj

)
ξbj−3/2eiζ2/2.



(B 6)

Here, ζ = ηξ−1/2 and the term G
(0)
3e in the third part of (B 6) is the inner expansion

of the unknown eigensolution. We postulate that this eigensolution is made up of a
linear combination from the complete set of similarity solutions given in Bluman &
Cole (1974). With a slight change of variables to conform the solutions from the heat
equation to the current leading-order equation GΨΨ + 2iGΦ + (1− k2

3)G = 0, the only
family of similarity solutions from those given in Bluman & Cole (1974) that satisfies
the boundary condition GΨ |Ψ=0 = 0 and exhibits the required singular behaviour for
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small R is proportional to G+
E + G−E , where

G±E = Φb−3/2(1 + iτΦ)1−b exp

{
i

2
(1− k2

3)Φ+
iΨ 2

2Φ
− iζ̃2±

2

}

× [C1M
(

3
2
− b, 1

2
, iζ̄2±/2

)
+ C2ζ̄±M

(
2− b, 3

2
, iζ̄2±/2

)]
, (B 7)

M is Kummer’s function, the constants C1, C2, A, τ and b are arbitrary and where

ζ̄± =
±Ψ − iAΦ

Φ1/2 (1 + iτΦ)1/2
(B 8)

is the similarity variable. Given the singularity that must be cancelled in the limit
R ↓ 0, G(0)

3e is uniquely determined by expressing (B 7) as a function of ξ and η and
expanding in ε. We find

G
(0)
3e =

ε1/2(sgn η)j+1Ej

k
ξbj−3/2M( 3

2
− bj, 1

2
, iζ2/2). (B 9)

The second term of the expansion of G3e depends on the unknown A and τ, and
therefore G(1,1) is not yet determined. However, G(1,1) can be fixed by calculating G(1,1)

from G(0,0), G(1,0) and G(0,1) using (B 2), the asymptotic matching principle and the
relations (B 6). By comparing the inner- and outer-region equations (B 2) and (3.5),
the relation

∂2G(1,1)

∂η2
+ 2i

∂G(1,1)

∂ξ
− bjc+

j (γ + 1)(sgn η)jξbj−1 ∂
2G(1,0)

∂ξ2

−bj(bj − 1)c+
j (γ + 1)(sgn η)jξbj−2 ∂G(1,0)

∂ξ
− 2εbjc

+
j (sgn η)jξbj−1 ∂

2G(0,0)

∂η2

+ε(1− k2
3)G(0,1) + iε(γ − 1)bj(bj − 1)c+

j (sgn η)jξbj−2G(0,0)

+2iε(γ − 1)bjc
+
j (sgn η)jξbj−1 ∂G(0,0)

∂ξ
= 0 (B 10)

can be deduced. Solving for G(1,1) then gives

G(1,1) = G(1,0) + G(0,1) −G(0,0)

+
eπi/4c+

j Anε
3/2ξbj−1/2 sgn (η)

8 (2π)1/2 k
{−i(γ + 1)(1− k2

3)ζ2eiζ2/2

−2(γ + 1)(bj − 1
2
)(1− k2

3)M( 3
2
− bj, 1

2
, 1

2
iζ2)

+2
[
8bj + (γ + 1)(bj + 1

2
)(1− k2

3)− 2(γ + 1)
]

eiζ2/2

−8 (2π)1/2 e−πi/4bj |ζ| erfc (e−πi/4|ζ|/√2)− 8Γ (bj + 1)U
(
b, 1

2
,− 1

2
iζ2
)

eiζ2/2}
+
∑
m

c′mξ
b′mM(−b′m, 1

2
, 1

2
iζ2), (B 11)

where the summation represents some linear combination of elementary solutions
obtained from Gηη + 2iGξ = 0 by applying separation of variables. The function U
is the second confluent hypergeometric function as defined in Abramowitz & Stegun
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(1972), and this term cancels the velocity normal to the ξ-axis introduced by the
term that involves the complementary error function. It matches with H

j
3c, whose

inner expansion is calculated by making the simplifying variable transformation that
deforms the inversion contour in (4.4) onto the path of steepest descent (without
actually employing the method of steepest descent itself, as the exponent is not large
but small). The right-hand side of (B 11) is exactly the expression that is obtained
when we calculate G(1,1) if and only if A, τ and the constants c′m are set to zero, and
after an inspection of (B 7) with ζ̄± = ±ΨΦ−1/2, we conclude that (4.24) gives the
correct eigensolution.

Appendix C. Uniformly-valid phase terms
From (5.4)–(5.6) it is evident that the asymptotic expansion that defines the tran-

sonic eikonal becomes disordered when the Mach-wave region is approached, or
more precisely, when tan θ = O(δ−1/3) and the V2(θ) term is of order of magnitude
comparable to the V1(θ) term. In order that a numerical investigation may still be
performed, even at these steep observer angles, we revise our ray-field description of
the acoustic radiation as follows.

When β2∞ < 0 and there is no mean-flow distortion (δ = 0), the singularity is
resolved by considering the subsonic solution (4.32) that is valid in the Mach-wave
region under these conditions. The phase of its far-field expansion (4.33) approximates
the term ikψ2/2φ of the transonic phase when β2∞ tan2 θ � 1, and we therefore
suppose that a uniformly valid expression, σ̄uni(φ, ψ), resembles the subsonic phase of
the Mach-wave region. Indeed, by rescaling the eikonal equation such that β2∞ tan2 θ =
O(1) and substituting the subsonic phase for σ̄ at leading order, we obtain

σ̄uni(φ, ψ) = (φ2 + β2
∞ψ

2)1/2

(
1

β2∞
− w2

2
− β2∞w4

8

)
− φ

(
1

β2∞
− 1

)

−φ
′(φ, ψ̃)(φ2 + β2∞ψ2)1/2

φ

{
1− (γ + 1)

2

[
φ(1/β2∞ − w2/2)

(φ2 + β2∞ψ2)1/2
− 1

β2∞

]2
}
,

(C 1)

and confirm that it matches (in the limit β2∞ → 0) with the phase V1(θ)φ+ V2(θ)φ′ of
(5.4) found earlier. In fact, this eikonal is also valid for all polar angles when there is
non-zero mean-flow distortion (δ 6= 0), though only in the far field where q � β2∞. The
solution of the transport equation is unaffected at leading order, and the ray fields
exhibit the same r−1/2 decay. Using this uniformly valid expression for the phase, the
acoustic intensity is integrable and the normalized sound power is written as

P =

∫ π/2

−π/2
|D(θ)|2

k cos2 θ(1 + β2∞ tan2 θ)
dθ. (C 2)

It turns out that the contribution of the radiation in the Mach-wave region to the
total acoustic power is asymptotically small.

In order that the integral (C 2) may be computed more easily, the phase shift
∂±(θ) (see (5.26)), which was calculated from the singular eikonal, is replaced by its
uniformly-valid equivalent, which is calculated from (C 1). The phase shift between
sources at the leading and trailing edges, as observed from the far field (determined
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by expanding σ̄uni(φt, ψ)− σ̄uni(φ, ψ) for large r) is now

∂±uni(θ) = φ±TE

(
1

β2∞
− 1

)
− φ±TE

(1 + β2∞ tan2 θ)1/2

(
1

β2∞
− w2

2
− β∞w4

8

)

+(φ±TE − 2)(1 + β2
∞ tan2 θ)1/2

{
1− (γ + 1)

2

[
1/β2∞ − w2/2

(1 + β2∞ tan2 θ)1/2
− 1

β2∞

]2
}
,

(C 3)

which indeed converges to ∂±(θ) when β2∞ tan2 θ → 0. To the order considered, this
adjustment does not affect the value of the integral (C 2), but since the uniformly
valid expression of the phase shift is now proportional to tan θ, rather than tan4 θ, as
φ→ 0, the numerical evaluation of the integral is performed more easily.
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